Biochemical-genetic analysis of Fe-S cluster biosynthesis in Azotobacter vinelandii Mihaela-Carmen Unciuleac¹, Deborah C. Johnson¹, Patricia C. Dos Santos¹, Ina Puleri¹, Estella C. Raulfs¹, Timothy J. Larson¹, Archer D. Smith², Kala Chandramouli², Michael K. Johnson², Sunil Naik³, Boi Hanh Huynh³ and Dennis R. Dean^{1*} ¹Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, ²Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, and ³Department of Physics, Emory University, Atlanta, Georgia 30322 The nitrogen-fixing bacterium Azotobacter vinelandii has two different systems (Nif and Isc) that have been shown to have functions related to the biogenesis of Fe-S clusters. We are interested in exploring the biochemical mechanism for Fe-S cluster assembly directed by these systems and how target specificity is selected. We are also interested in the potential for functional cross-talk between the Nif and Isc systems as well as the functions of other possible Fe-S cluster biosynthetic proteins that are genetically unlinked to either the Nif or the Isc components. These other systems include remnants of the Suf system, a second IscA, and an Nfu protein. Our strategy has involved the development of a controlled expression system for the evaluation of the physiological and biochemical effects that occur upon depletion of a specific targeted component. In addition we are developing methods for the *in vitro* activation of nitrogenase components, and various 4Fe-4S and 2Fe-2S cluster-containing proteins. Our biochemical and genetic studies are also complemented by biophysical strategies aimed at elucidating the nature of Fe-S cluster intermediates and gaining insight into how cluster transfer to target proteins is accomplished.