THE STRUCTURE OF THIODITHIAZYL CHLORODISULPHATE, S₃N₂S₂O₆Cl AND ITS PREPARATION
FROM THIODITHIAZYL MONOCHLORIDE, S₃N₂Cl

Arthur J. Banister, Howard G. Clarke, Ivan Rayment and Harrison M.M. Shearer

Department of Chemistry, University Science Laboratories, South Road, Durham, England.

(Received 24 April 1974)

Thiodithiazyl monochloride, S₃N₂Cl, has been known since 1880(1), and although it is one of the most accessible inorganic sulphur-nitrogen compounds very little is known of its chemistry. It can be prepared from S₄N₄ and S₂Cl₂ in the cold(2), S₄N₄ and NOCl(2), (NSCl)₃ and NO(2), or more conveniently from S₃N₂Cl₂ either by heating (80–90°C) in vacuo for 2–3 hours(3), or by reduction with anhydrous formic acid (this paper). Thiodithiazyl monochloride is obtained as a deep green powder insoluble in most organic solvents and in water, by which it is rapidly hydrolysed.

Glemser(4) has suggested that S₃N₂Cl may be polymeric. Heal(5) and Becke-Gehring(6) have proposed (monocyclic(5) and bicyclic(6)(I)) ionic structures containing the S₆N₄2⁺ cation. An ionic structure is supported by recent chlorine n.q.r. data(7). In contrast to S₃N₂Cl⁺Cl⁻ which shows

\[
\begin{align*}
\text{Cl} & \\
\text{-N-S-N-} & \\
\text{S-N-S} & \\
\text{-S-N-S-} & \\
\end{align*}
\]

chlorine n.q.r. frequencies [29.02 MHz (³⁵Cl) and 22.91 MHz (³⁷Cl) at 77°K] in the region expected for chlorine covalently bound to sulphur, no signal was detected for S₃N₂Cl in the frequency range 13.0 to 44.0 MHz(7).
We have studied the reactions of S_3N_2Cl with chloride ion acceptors (AlCl$_3$ and FeCl$_3$) and with anhydrous acids (H$_2$SO$_4$ and HSO$_3$Cl). The chlorodisulphate, $S_3N_2S_2O_6Cl$, was obtained in low yield from S_3N_2Cl and chlorosulphuric acid and an examination of a single crystal by X-ray diffraction revealed a unique type of structure. The compound is essentially ionic $(S_6N_4)^{2+}(ClSO_3^{-} \cdot SO_3^{-})_2$. The cation (Figure 1) is of a new type; it consists of a pair of planar S_3N_2 rings related by a centre of symmetry. The SS bonds in adjacent rings as parallel and the SS distances (3.027Å) between the rings are well below the usual van der Waals separation ($\sim 3.7Å$). Each S_3N_2 ring has a closely associated $S_2O_6Cl^{-}$ ion.

FIG. The $S_6N_4^{2+}$ ion in $S_6N_4(S_2O_6Cl)_2$.
Experimental

I.r. spectra (Nujol mulls) were recorded on a Grubb Parsons GS2A or a Spectromaster prism grating spectrometer (4000-400 cm\(^{-1}\)). U.v./visible spectra were recorded on a Unicam SP800 spectrometer (190-700 nm). Thiodithiazyl monochloride, \(S_3N_2Cl\), was prepared by heating \(S_3N_2Cl_2\) in vacuo at 80-90\(^{\circ}\) for about 30 minutes\(^{(3)}\). Chlorosulphuric acid was freshly distilled under reduced pressure. Sulphur dioxide was dried in a cold trap over \(P_2O_5\) before distilling into the reaction flask. Formic acid was dried over boric oxide and anhydrous copper sulphate and purified by distillation\(^{(8)}\).

Reduction of thiodithiazyl dichloride to the monochloride with anhydrous formic acid.

Powdered thiodithiazyl dichloride (5 g.) was stirred at room temperature with anhydrous formic acid (ca. 50 ml.). The orange \(S_3N_2Cl_2\) gradually turned dark green and when the evolution of gas had ceased (after ca. 2 h.), the precipitate \((S_3N_2Cl)\) was filtered and pumped dry in vacuo. The product was identified from its i.r. and u.v. spectra. Yield ca. 80%.

Analysis figures showed that the purity of the product was usually inferior to that of the \(S_3N_2Cl\) obtained by heating \(S_3N_2Cl_2\) in vacuo\(^{(3)}\). I.r. and u.v. spectra were obtained using samples obtained by the latter method.

Thiodithiazyl monochloride dissolves in concentrated sulphuric acid with evolution of HCl. In the u.v./visible region \(\lambda_{\text{max}}\) (and \(\varepsilon\)) values were: 219 \((3.5 \times 10^3)\), 248.5 \((4.7 \times 10^3)\) and 356m \((9 \times 10^2)\); the molecular formula was taken as \(S_3N_2Cl\). Since the solutions decompose rapidly on standing, spectra were recorded immediately, and molar extinction coefficients are only approximate. I.r. (Nujol mull) absorptions occurred (cm\(^{-1}\)) at: 964s, 944vs, 745w, 716sh, s, 708vs, 699sh, s, 583s, 569w, 456w, 431m.
Preparation of thiodithiazyl chlorodisulphate.

Thiodithiazyl monochloride (2.56 g., 0.016 mole) was added to chlorosulphuric acid (ca. 50 ml.) in a round-bottomed flask under nitrogen. A rapid reaction ensued, HCl was evolved for a few minutes and the solution turned dark brown; there was no precipitate. The solution was allowed to stand under nitrogen at room temperature for 4-5 days, with occasional pumping to remove solvent. During this time, very deep green (virtually black) crystals formed at the bottom of the flask, together with a yellowish powder. The solid mixture was filtered and as much solvent as possible was removed in vacuo. The solid was washed with liquid SO₂, pumped dry in vacuo and hand sorted, into crystals and powder, in a dry box. The powder was discarded. The crystals were further hand sorted to find those suitable for the X-ray studies. The overall yield was about 1%.

The reaction between S_3N_2Cl and HSO₃Cl (using molar ratio 1:1) was also carried out in liquid SO₂ as solvent (in which S_3N_2Cl is slightly soluble). The precipitate which had formed after a few hours was solvent extracted with liquid SO₂ to give crystals of $S_3N_2S_2O_6Cl$; however these were mostly twinned or complex and unsuitable for X-ray work. The overall yield was again of the order of 1%.

Other reactions of S_3N_2Cl.

The reactions of S_3N_2Cl with AlCl₃ and FeCl₃ were studied in various solvents in an attempt to prepare $S_3N_2MCIC_4$ (M = Al, Fe). The reactions in nitrobenzene, chlorobenzene, acetyl chloride or carbon tetrachloride gave mixtures which appeared to consist of starting materials, hydrolysis products and (in the case of acetyl chloride) a complex (CH₃CO⁺MCl₄⁻, cf. CH₃CO⁺SbCl₆⁻) with the solvents. In liquid sulphur dioxide, insoluble powders were obtained; analyses and spectra showed that they were mixtures and probably contained the required AlCl₄⁻ or FeCl₄⁻ salt, but they were too insoluble in liquid SO₂ to allow recrystallisation. In thionyl chloride,
S_3N_2Cl reacted (1:1) with $AlCl_3$ or $FeCl_3$ to give crystalline products but i.r. and u.v. spectra and analyses showed that they were $AlCl_4^-$ and $FeCl_4^-$ salts of the $S_3N_2Cl^+$ cation already known (10,11).

Structural Studies

The crystals obtained from the reaction between S_3N_2Cl and chlorosulphuric acid, crystallised in a triclinic cell with $a = 7.689$, $b = 10.726$, $c = 6.614\AA$, $\alpha = 101.00$, $\beta = 114.43$, $\gamma = 90.35^\circ$, space group $P\overline{1}$ and two units of $S_3N_2S_2OCl$ per cell. The intensity data were collected on a four circle diffractometer, using 2θ-filtered Mo radiation, to a limit of $\theta = 25^\circ$. A total of 1707 reflections was recorded, and, of these, 1337 reflections were considered to be observed having net counts ≥ 3 e.s.d.'s. The structure was solved using the Patterson function and refined by full matrix least squares methods. The final R-value was 0.031 for the observed reflections.

In the crystal, the cation consists of two planar S_3N_2 rings, related to one another by a centre of symmetry. The isolated S_3N_2 units, which show C_{2v} symmetry within the limits of experimental error, have an SS distance of $2.145\AA$ and two distinct SN distances (mean values $1.569\AA$ and $1.605\AA$). The S_3N_2 rings which lie in parallel plans $2.884\AA$ apart are separated from one another by SS distances of $3.027\AA$.

In the anion, $ClSO_3\cdot0.5SO_3^-$, the SO bridge distances are 1.552 and $1.718\AA$; the shorter distance involves the sulphur atom attached to chlorine. The terminal SO distances lie between 1.396 and $1.438\AA$, and the SCl distance is $1.986\AA$. All the terminal oxygen atoms approach closely (in the range $2.68-3.04\AA$) to the sulphur atoms of the cations.
Discussion

The reactions of S_2N_2Cl with $AlCl_3$ and $FeCl_3$ did not produce any useful products except in liquid SO_2. In this case the product was contaminated with starting material. Recrystallisation was not attempted because the reaction of S_2N_2Cl with chlorosulphuric acid produced crystals suitable for X-ray analysis.

Both S_2N_2Cl and S_3N_2Cl are soluble in chlorosulphuric acid; S_4N_3Cl gives the chlorosulphate $^{(12)}$, but on standing with occasional pumping the solution of S_3N_2Cl slowly deposits crystals of the chlorodisulphate. Some hydrogen chloride was probably removed during the pumping, with formation of chlorodisulphuric acid:

$$2CISO_3H \rightarrow ClS_2O_6H + HCl$$

The chlorodisulphate is presumably less soluble than the chlorosulphate in chlorosulphuric acid.

The type of structure found for the cation is without precedent. The cation can be regarded as bicyclic $S_6N_6^{2+}$ with a unique type of 4 centre interaction between pairs of sulphur atoms in two identical π delocalised S_3N_2 rings (Figure 1). The SN distances (mean values 1.569Å and 1.605Å) are typical of the distances found in π delocalised SN rings (cf. $S_3N_2Cl^+$, 1.543-1.617, mean 1.589Å $^{(10)}$; $S_4N_3^+$, 1.493-1.582, mean 1.550Å $^{(13)}$). The SS distance (2.145Å) in each ring is close to that in $S_3N_2Cl^+(2.136Å) ^{(10)}$ and $S_4N_3^+(2.064Å) ^{(13)}$. The S_3N_2 rings are separated from one another by SS distances (3.03Å) which are appreciably shorter than van der Waals contact (e.g. 3.64Å in solid tetrasulphur tetranitride $^{(14)}$ and 3.69Å in orthorhombic sulphur) $^{(15)}$. Sulphur-sulphur distances close to 3Å $^{(viz. 2.86, 2.94, 3.00, 3.07, 3.09Å etc.)} ^{(16)}$ have also been found in S_8^{2+} and these short cross-ring distances have been interpreted as resulting...
from multicentre bonding \(^{(17)}\). Since \(S_3N_2^{2+}\) would be a 6π Hückel ring, it appears that the \(S_6N_4^{2+}\) cation can be regarded as consisting of two aromatic 1,2-dithiolium cations linked via pairs of sulphur atoms in a 4 centre 2 electron bond:

\[
\begin{array}{c}
\text{N} \\
\text{S} \quad \text{----} \quad \text{S} \\
\text{S} \quad \text{2+} \\
\text{S} \quad \text{----} \quad \text{S} \\
\text{S} \quad \text{N} \\
\end{array}
\]

The anion was found to be the chlorodisulphate ion, \(\text{ClSO}_3\cdot\text{SO}_3^-\), and this is the first reported structure determination of this species. The most noticeable features of the anion are the asymmetry of the oxygen bridge and the remarkably long bridge SO distance (1.718Å) involving the sulphur atom attached to oxygen only. It is a rare example of an SO bond longer than the "single bond" distance calculated from either Pauling's covalent radii (1.70Å)\(^{(18)}\) or the Schomaker-Stevenson rule (1.69Å)\(^{(19)}\). A similar value of 1.72Å has been reported in \((\text{NO}_2^+)\cdot\text{S}_3\text{O}_10^{2-}\) but the accuracy of this determination is low (e.s.d.'s about 0.05Å for the SO bonds)\(^{(20)}\). The other SO bridge distance (1.552Å) in \(S_6N_4\cdot2\text{Cl}_2\cdot6\text{SO}_3^2\) can be compared with that in \(\text{NO-SO}_3^-\) (1.56Å, in \(\text{KHSO}_4\)) and \(\text{CH}_3\text{O-SO}_3^-\) (1.58Å)\(^{(22)}\). The terminal SO distances (1.396-1.438Å) are close to those in the disulphate ion, \(S_2\text{O}_7^{2-}\) (mean SO = 1.437Å)\(^{(23)}\). The SC\(_2\) distance (1.986Å) is similar to those in \(S_2\text{Cl}_2\) (1.99Å)\(^{(24)}\) and \(\text{SO}_2\text{Cl}_2\) (2.011Å)\(^{(25)}\).

The structure of \(S_6N_4\cdot2\text{Cl}_2\cdot6\text{SO}_3^2\) will be discussed in further detail elsewhere.

We thank Staveley Chemicals Limited and the S.R.C. for a CAPS Studentship (to H.G.C.) and the S.R.C. for a Research Studentship (to I.R.).
References