VITAMIN D3 NEWS FOR MULTIPLE SCLEROSIS PATIENTS

June 17, 2014
Dr. C.E. Hayes, Ph.D., Professor of Biochemistry, U. Wisconsin, Madison, WI

This newsletter's purpose is to provide current information on vitamin D3 research relevant to multiple sclerosis (MS). Medical advice regarding vitamin D3 and MS must come from your doctor following new Endocrine Society guidelines (1).

A critical barrier to developing treatments to halt MS disease progression and repair neurological damage is our limited understanding of the factors that cause MS. The MS disease process appears to involve autoimmunity to myelin components, coupled with non-immune neurodegenerative processes.

Lewis Thomas wrote "For every disease there is a single key mechanism that dominates all others. If one can find it, and then think one’s way around it, one can control the disorder." What is the single key mechanism that dominates all others in MS?

Demyelinating disease appears to develop in individuals carrying genetic risk factors who are exposed to particular environmental factors. MS clustering within families signals a genetic contribution (2). However, 75% of identical twins do not have co-occurrence of MS, the influence of the genetic risk factors is so modest that accurately predicting MS based on genetic risk, even between siblings, is impossible (3), and one’s genetic risk factors cannot be changed. The environmental factors exert the strongest influence on MS risk and may be modifiable (4). The "single key mechanism that dominates all others" must be a disease threshold-setting, environmentally-directed mechanism.

Evidence points to a sunlight-linked factor. High sunlight exposure correlated with low MS risk globally (5). Young migrants substantially reduced their MS risk by settling in regions with ample compared to limited winter sunlight (6). After long dark winters, relapses (7) and brain lesions (8) surged in MS patients. Thus, a sunlight-linked factor trumped genetic factors in determining MS risk and disease activity. Curiously, Northern Norwegians who consumed fish as a dietary staple had a lower risk of developing MS than their Southern countrymen who consumed less fish (9). Fish oil compensated for limited winter sunlight. Fish oil supplements also reduced MS disease activity (10). If we aspire to control MS, we must identify the factor common to sunlight and fish oil.

Vitamin D3 may be that factor, the major conduit for the protective actions of sunlight and fish consumption in MS (11). Sunlight catalyzes vitamin D3 formation in the skin, and fish oil is a rich source of dietary vitamin D3. Vitamin D3 is converted into 25-hydroxyvitamin D3 (25(OH)D), an inactive hormone precursor, and finally into a hormone, calcitriol. Calcitriol regulates gene activity through a nuclear vitamin D receptor, enabling coordination of important biological processes according to environmental cues.

Could the biological actions of vitamin D3 and calcitriol diminish autoimmunity to myelin and impede the neurodegenerative processes that drive MS disease? To answer this question, scientists must establish whether the association between vitamin D3 and MS is strong, consistent, and reproducible, whether a logical time line and plausible mechanisms support a cause-effect relationship, and whether altering vitamin D3 affects MS risk and/or severity (12). Recent research has addressed these questions.

There is a strong, consistent, and reproducible correlation and a logical time line linking low vitamin D3 status (serum 25(OH)D) and high MS risk, frequent relapses, and rapid disease progression (11). Children who took supplementary vitamin D3 had a lower risk of MS as adults (13). Among patients with a first event suggestive of MS, low vitamin D3 status predicted higher MS activity, lesion load, brain atrophy, and clinical progression in a 5 yr study (14). Among MS patients living where serum 25(OH)D levels fluctuate seasonally, a winter drop in 25(OH)D preceded a spring surge in relapses. In adults (15, 16) and pediatric MS patients (17), higher serum 25(OH)D levels (>40 ng/mL) correlated with fewer lesions and relapses. MS patients who began taking vitamin D3 during a 5 yr study had 33% fewer new MRI lesions for each 10 ng/mL increase in 25(OH)D (16). These studies indicate vitamin D3 might be a major conduit for environmentally-directed protective mechanisms in MS.

Genetic data also implicate vitamin D. The CYP27B1 gene encodes the enzyme that converts 25(OH)D into biologically active calcitriol. In rare Canadian families with multiple MS-affected members, 35 of 35 family members with MS had one damaged copy of the CYP27B1 gene (18). The odds that this inheritance pattern occurred by chance are 1 in a billion. New research confirmed this association in another multi-incident Canadian family (19). Other researchers have not found this correlation, but it may depend on an interaction between the damaged CYP27B1 gene and low vitamin D status. Vitamin D3 may also influence the HLA DRB1*1501 gene, the strongest genetic risk factor for MS (20).

There are plausible biological explanations for the vitamin D3 - MS link. The vitamin D system is neuroprotective, supporting memory, cognition, neuro-transmission, and neuroplasticity (21). The vitamin D system opposes autoimmunity and inflammation in the central nervous system (CNS) by reducing autoimmune T cell access to the CNS, increasing autoimmune T cell elimination from the CNS, and promoting induction of the T regulatory cells that defend against autoimmunity (11, 22, 23). Animal modeling has demonstrated that estrogen enables vitamin D3 to prevent inflammation of the female CNS. Removing estrogen undermined vitamin D3 protective functions, and replacing estrogen restored them (24). New research suggests estrogen may also be important for vitamin D3 protective functions in women (25, 26). This research has important implications for MS. The transition from relapsing-remitting to secondary progressive MS in women occurs around the time of menopause (27). If estrogen is essential to support vitamin D system functions, then as estrogen declines, the protective benefits of both estrogen and vitamin D3 may be lost simultaneously. More research is needed to investigate this biological relationship and how it may influence MS progression in women.

Three randomized controlled studies have provided glimpses of vitamin D3’s beneficial effects in MS and optic neuritis patients. MS patients in a Canadian study who took an average of 14,000 IU/day of vitamin D3 had fewer relapses and less disability progression over one year (28). A Finnish study found the vitamin D3 group (20,000 IU of vitamin D3 weekly) had 85% fewer new MRI lesions, and trends toward lower total lesion burden, reduced EDSS, and improved timed 10 foot tandem walk scores over one year (29). An Iranian study of optic neuritis patients with low 25(OH)D levels found the vitamin D3 group (50,000 IU of vitamin D3 weekly) had lower rates of new brain lesions and 68% less risk of developing MS (30). Some studies have not found beneficial effects, but these studies
involved few subjects, short observation periods, or vitamin D2 in place of vitamin D3. Additional vitamin D3 studies are underway.

Vitamin D3 appears to be a major conduit for the protective actions of sunlight and fish consumption, so, it may be beneficial for MS patients with limited sunlight exposure to supplement with vitamin D3 daily to avoid becoming vitamin D deficient. A blood test for 25(OH)D is needed to determine your vitamin D status (http://www.vitamindcouncil.org/about-vitamin-d/testing-for-vitamin-d3). MS disease activity was lowest in patients whose 25(OH)D levels were greater than 40 ng/mL, so this is a reasonable target level. Several gene variants influence circulating 25(OH)D levels; people with these variants will require more vitamin D3 than others to achieve 40 ng/mL of 25(OH)D. MS patients can take 14,000 IU/day safely (28). Some evidence indicates vitamin D3 may be less beneficial so vitamin D3 is preferred (31). Biological relatives of MS patients, especially sisters and daughters, have an increased risk of MS and may benefit from daily vitamin D3 supplements.

If vitamin D3, calcitriol, and the VDR do indeed contribute to protective biological actions like promoting T regulatory cells, eliminating autoimmune T cells, and enhancing neurological repair, and if these are dominant protective mechanisms in MS, then we may be able to control MS through a vitamin D-based strategy. A recent animal modeling study demonstrated that one calcitriol dose plus supplementary vitamin D3 ameliorated autoimmune demyelinating disease, whereas neither treatment alone accomplished this objective (22). Studies are being designed now to determine whether intermittent calcitriol pulse dosing plus supplementary vitamin D3 will benefit MS patients. Stay tuned!

References

22. Nashold, F. E., C. D. Nelson, L. M. Brown, and C. E. Hayes. 2013. One calcitriol dose transiently increases Helios+FoxP3+ T cells and ameliorates autoimmune demyelinating disease, whereas neither treatment alone accomplished this objective (22). Studies are being designed now to determine whether intermittent calcitriol pulse dosing plus supplementary vitamin D3 will benefit MS patients. Stay tuned!