METHOD

Identification of RNAs that bind to a specific protein using the yeast three-hybrid system

DHRUBA J. SENGUPTA,1 MARVIN WICKENS,2 and STANLEY FIELDS1,3
1 Departments of Genetics and Medicine, University of Washington, Seattle, Washington 98195, USA
2 Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
3 Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA

ABSTRACT
We have adapted the yeast three-hybrid system to identify RNA ligands for an RNA-binding protein. In this assay system, a protein–RNA interaction is detected by the reconstitution of a transcriptional activator using two hybrid proteins and a hybrid RNA. The RNA molecule is tethered to the promoter of a reporter gene by binding to a hybrid protein consisting of the bacteriophage MS2 coat protein fused to the DNA-binding protein LexA; the RNA-binding domain to be analyzed is fused to the transcriptional activation domain of the yeast Gal4 protein; and the bifunctional RNA consists of binding sites for the coat protein and for the other RNA-binding domain. We built an RNA library such that short fragments of genomic DNA from yeast were transcribed in yeast together with binding sites for the coat protein. We screened this hybrid RNA library for RNAs that bound to the yeast Snp1 protein, a homolog of the human U1-70K protein. The screen yielded as the strongest positive the fragment of U1 RNA that contains loop I, which is known to bind to Snp1 in U1 snRNP. We also identified four other RNA ligands that produced weaker three-hybrid signals, suggesting lower affinities for Snp1 as compared to U1 RNA. In addition, this search also yielded a set of RNA sequences that can activate transcription on their own when bound to a promoter through a protein interaction.

Keywords: hybrid protein; reporter gene assay; Snp1 protein; transcriptional activator; U1 RNA

INTRODUCTION
RNA–protein interactions play crucial roles in many biological processes, including transcription, splicing, and translation. These interactions are necessary for assembly of the machinery involved or for biological regulation. Elucidation of the constituents of an RNA–protein complex requires that protein partners can be identified for an RNA sequence of interest, and conversely, that RNA partners can be identified for a protein of interest.

The yeast three-hybrid system (SenGupta et al., 1996) detects the interaction between an RNA and a protein. In this system, a transcription factor is assembled by the use of an RNA bridge that brings a fusion protein containing a DNA-binding domain together with a fusion protein containing an activation domain. The assembly of this ternary complex depends on each fusion protein containing an RNA-binding domain that binds to a site in the RNA molecule. As fixed components, the DNA-binding domain hybrid is the LexA protein fused to the bacteriophage MS2 coat protein, and the hybrid RNA contains two copies of the coat protein binding site. The three-hybrid system has been used to identify proteins that bind to RNA sequences such as the 3′ end of histone mRNA (Wang et al., 1996; Martin et al., 1997) and an element in the 3′ untranslated region of the Caenorhabditis elegans fem3 mRNA (Zhang et al., 1997), and to detect and analyze known RNA–protein interactions (e.g., Bacharach & Goff, 1998).

We have now adapted this system to identify RNA ligands of an RNA-binding protein. We generated an RNA expression library of genomic sequences from the yeast Saccharomyces cerevisiae fused to coat protein binding sites, and screened it for RNAs that can bind the yeast Snp1 protein, a homolog of the human U1-70K protein. This search identified an RNA fragment containing the loop I sequence of SNR19 RNA (U1 RNA), whose binding to Snp1 has been previously demonstrated by in vitro assays (Kao & Siliciano, 1992). Additionally, the search identified other Snp1-binding RNAs that yielded a weak signal in this assay, as well as RNA sequences that alone can activate transcription when bound to the promoter of a reporter gene.

Reprint requests to: Stanley Fields, Department of Genetics, University of Washington, Box 357360, Seattle, Washington 98195, USA; e-mail: fields@u.washington.edu.
RESULTS

Optimization of hybrid RNA parameters

To modify the three-hybrid assay to allow searches for RNAs, we initially characterized features of the hybrid RNA that could guide construction of an optimal RNA library. Vectors for RNA expression contain the yeast URA3 gene and produce fusions with the coat protein binding sites oriented either 5’ (pIII/MS2-1) or 3’ (pIII/MS2-2) of the other RNA element (SenGupta et al., 1996). Inserts appeared to be more stably maintained in *Escherichia coli* in the pIII + (1996), MS2-2) of the other RNA element (SenGupta et al., 1996). Defined binding sites + yields a high level of context sequence of interest can function in the three-hybrid domain hybrid with the Iron Response Protein-1 (IRP1)

of 100 bp and a yeast genome size of ~1.3 × 10^7 bp, this library represents close to a 12-fold coverage of any sequence, or sixfold coverage of a sequence in the correct orientation for its normal transcription. The library was transformed into the L40coat strain containing the Snp1 activation domain hybrid plasmid. Transformants were plated on synthetic media lacking uracil, leucine, and tryptophan to select for the presence of the RNA plasmid, activation domain plasmid, and integrated MS2 coat protein fusion gene, respectively. The media also lacked histidine and contained 0.5 mM 3-aminotriazole to select for expression of the *HIS3* reporter gene. 3-aminotriazole inhibits the enzymatic function of the His3 protein and thus eliminates the background of colonies due to a low basal level of *HIS3* expression. From more than 1.5 million yeast transformants, ~250 His^+^ colonies formed after 4–5 days. Of these, 83 also expressed β-galactosidase activity.

For the 83 colonies active for both reporter genes, it was necessary to determine whether this activity was dependent on the presence of the Snp1 plasmid. We grew these colonies nonselectively in rich media, such that some of the cells lost the activation domain plasmid. This culture was then plated on media deficient in uracil but not leucine to identify those colonies that maintained the RNA, but not the activation domain plasmid. Colonies with this pattern were retested for β-galactosidase activity. Of the 83 transformants, only 13 lost β-galactosidase activity upon loss of the Snp1 plasmid. The other 70 expressed RNAs that were alone capable of activating reporter gene transcription when tethered to the promoter through the LexA-MS2 coat protein fusion.

Library search for Snp1-binding RNAs

Yeast genomic DNA was partially digested with four restriction enzymes with four base-recognition sites, and fragments of 50–150 bp were gel-purified and ligated into pIII/MS2-2 to generate a library of >1.5 × 10^6 *E. coli* transformants. With an average insert size of 100 bp and a yeast genome size of ~1.3 × 10^7 bp, this library represents close to a 12-fold coverage of any sequence, or sixfold coverage of a sequence in the correct orientation for its normal transcription. The library was transformed into the L40coat strain containing the Snp1 activation domain hybrid plasmid. Transformants were plated on synthetic media lacking uracil, leucine, and tryptophan to select for the presence of the RNA plasmid, activation domain plasmid, and integrated MS2 coat protein fusion gene, respectively. The media also lacked histidine and contained 0.5 mM 3-aminotriazole to select for expression of the *HIS3* reporter gene. 3-aminotriazole inhibits the enzymatic function of the His3 protein and thus eliminates the background of colonies due to a low basal level of *HIS3* expression. From more than 1.5 million yeast transformants, ~250 His^+^ colonies formed after 4–5 days. Of these, 83 also expressed β-galactosidase activity.

For the 83 colonies active for both reporter genes, it was necessary to determine whether this activity was dependent on the presence of the Snp1 plasmid. We grew these colonies nonselectively in rich media, such that some of the cells lost the activation domain plasmid. This culture was then plated on media deficient in uracil but not leucine to identify those colonies that maintained the RNA, but not the activation domain plasmid. Colonies with this pattern were retested for β-galactosidase activity. Of the 83 transformants, only 13 lost β-galactosidase activity upon loss of the Snp1 plasmid. The other 70 expressed RNAs that were alone capable of activating reporter gene transcription when tethered to the promoter through the LexA-MS2 coat protein fusion.

U1 RNA (encoded by the *SNR19* gene) has been demonstrated by gel mobility shift assays (Kao & Siliciano, 1992), as has the binding of the homologous mammalian U1-70K protein to the same sequence in the human U1 RNA (Surowy et al., 1989). The entire Snp1 protein was used to construct an activation domain hybrid, and sequences encoding the 5’ 45 nt or 5’ 175 nt of U1 RNA were inserted into the RNA vector pIII/MS2-2. While both of these hybrid RNAs yielded a signal in the assay, the shorter U1 sequence led to approximately sixfold more β-galactosidase activity as compared to the longer sequence (50 U vs. 8 U). Taken together with the other experiments on the IRE-containing hybrid RNA, these results suggested that minimal binding sites without additional flanking RNA sequences might be optimal in this assay.
The 13 Snp1-dependent RNA plasmids were reintroduced into the yeast reporter strain along with either the Snp1 plasmid or the pACTII vector. Nine of these RNAs led to at least twofold more β-galactosidase activity when present with the Snp1 hybrid than with the activation domain alone (Table 1). Sequence analysis of these nine RNAs indicated that the RNA yielding the greatest reporter gene activity (B1) contained 68 bases of U1 RNA, including the loop I. The Snp1 binding site in U1 consists of a 10-base loop (bold and underlined in Table 1) and a 9-bp stem with a single bulged nucleotide (Fig. 1, B1). Point mutations within the loop of the yeast U1 RNA affect splicing activity in vivo (Liao et al., 1990), whereas similar mutations in the loop of the human U1 RNA inhibit U1-70K protein binding in vitro (Surowy et al., 1989). We searched for sequences similar to the U1 loop nucleotides in the other four Snp1-dependent RNAs, and identified the best matches (Table 1), which included one RNA with an 8/10 match (B2) and two with 7/10 matches (B3 containing two such matches, and B4). The RNA draw programs (Mazura & Wennborg, 1996) were then used to determine if a stable stem could be drawn that would display the best match as a loop (at 30 °C), and the corresponding stabilities for these structures (Fig. 1, B2–B5). For three of these RNAs (B2, B3, and B4), such a potential structure can be predicted. For the fourth (B5), a structure is shown in which a conserved G residue is base paired, but the short three-base stem containing this residue more likely would be single stranded when the protein binds.

RNA activators

For the 70 RNA sequences that activated transcription independently of the presence of the Snp1 activation domain hybrid, we sequenced the 10 that displayed the greatest reporter gene activity. These plasmids defined four sets of sequences (Table 2). Retransformation of these RNA plasmids into a strain that did not express the LexA-coat protein fusion resulted in no β-galactosidase activity, whereas cotransformation with a plasmid that expressed LexA-coat protein reconstituted activity (data not shown). Thus, these RNA activators require tethering to the promoter of the reporter gene to function. Although these RNAs might activate by different means—for example, by recruiting to the reporter gene promoter different RNA-binding proteins that possess an activation domain—we sought to determine if they possess any common sequence or struc-

Table 1. RNAs that bind to the Snp1 protein.

<table>
<thead>
<tr>
<th>Transcribed sequence of the insert</th>
<th>Number of times isolated</th>
<th>βGal with SNP1 plasmid</th>
<th>βGal with pACTII plasmid</th>
<th>Fold activation</th>
<th>Position relative to open reading frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 5’ uaagauaaucaagaggaucaagaagucucuauagugagaaggcuua 3’</td>
<td>1</td>
<td>40</td>
<td>1.2</td>
<td>33</td>
<td>SNR19 (U1 RNA coding sequence)</td>
</tr>
<tr>
<td>B2 5’ gaauaagauctaaugggagcucugacgguuuu 3’</td>
<td>1</td>
<td>12</td>
<td>2.5</td>
<td>4.8</td>
<td>On the antisense strand of SAC3 gene</td>
</tr>
<tr>
<td>B3 5’ uuucuggaggaauacuauagauauacugucucagagguucugacguccauagauauacagguauau 3’</td>
<td>4</td>
<td>6.2</td>
<td>1.6</td>
<td>3.9</td>
<td>Transcribed within SNF5 mRNA</td>
</tr>
<tr>
<td>B4 5’ cuuauacugcucagcuaagacuuaagauacuauauacagguucugacguccauacguauau 3’</td>
<td>1</td>
<td>3.8</td>
<td>1.7</td>
<td>2.2</td>
<td>May be transcribed as YEL057C</td>
</tr>
<tr>
<td>B5 5’ uauauuaaccaauaugucucagguauacuugugguugauacagauauauauauauau 3’</td>
<td>2</td>
<td>5.9</td>
<td>1.7</td>
<td>3.5</td>
<td>May be transcribed as YOR206W</td>
</tr>
</tbody>
</table>
Use of the algorithms of Gorodkin et al. (1997) to align these sequences indicated several possible sets of folds based on both similar secondary structure and primary sequence conservation, and one of these sets is shown in Figure 2. Additional analysis involving mutagenesis of specific nucleotides will be necessary to establish if these structural features correlate with transcriptional activation.

DISCUSSION

We describe an approach that should be generally applicable to the characterization of RNAs that are recognized by an RNA-binding protein. Using the three-hybrid system, we have screened a hybrid RNA library containing yeast genomic sequences and correctly identified as the strongest positive the sequence in U1 RNA that binds to the yeast Snpl protein. We also found four other RNAs that bind to Snpl and that produce lower reporter gene activity in the three-hybrid assay, suggesting a weaker affinity for Snpl. However, it is unlikely that these other RNAs bind to Snpl in vivo, and indeed, the RNA sequence that yields the greatest reporter gene activity of these four would not be expected to be present in a transcribed RNA. Structure predictions for these four RNAs indicate that at least three of them can be folded into a stem-loop that contains loop nucleotides resembling those critically important for U1 function.

The three-hybrid assay is rapid and simple to carry out, detects interactions that occur in the native conditions of the cell, and does not require purification of the RNA-binding protein. It should thus serve as a complementary strategy to approaches such as SELEX (Tuuerk & Gold, 1990; Gold et al., 1995) that detect protein–RNA interactions in vitro. The SELEX procedure has the advantageous feature that it can sample much larger numbers of RNA sequences (up to 10^{15}) than can be expressed in the three-hybrid assay following transformation of yeast (typically up to 10^{7}). However, SELEX detects interactions under arbitrarily defined in vitro conditions, and generally requires pure RNA-binding protein to carry out the assay.

Genome sequencing projects have defined many new putative RNA-binding proteins, based on the presence of motifs such as the RRM domain, for which no other information is available. By contrast, other RNA-binding proteins have been implicated in defined processes via genetic or biochemical approaches, but their RNA ligands remain unidentified. In both of these cases, the three-hybrid application described here may be helpful in adding key functional data to these proteins. The fact that RNAs are identified that are probably not biologically relevant targets of the protein suggests that rapid secondary screens of function will be essential.

The discovery that a large fraction of the initial positives in our search were due to RNA activators suggests that this class of sequence is likely to prove a substantial component of other RNA libraries. These RNAs may fold into structures that directly recruit proteins of the transcriptional machinery to activate reporter gene expression. Alternatively, the RNAs may bind to RNA-binding proteins that are not normally involved in transcription but that possess fortuitous activation domains. A simple means to eliminate these RNA

<table>
<thead>
<tr>
<th>Transcribed sequence of the insert</th>
<th>Number of times isolated</th>
<th>β-gal with RNA plasmid alone</th>
<th>Position relative to open reading frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA1 5' agagaugcugccugaggcaauu 3'</td>
<td>1</td>
<td>23</td>
<td>On the antisense strand of YLR152C</td>
</tr>
<tr>
<td>TA2 5' uuaugacugcuacaaaaauagcgguuaucuaaauagaaacggccuucucacacccugaaacagau 3'</td>
<td>4</td>
<td>11</td>
<td>Adjacent to YBRWdelta17</td>
</tr>
<tr>
<td>TA3 5' uuaugguuaucacucguugccuacgagggcaauucuaauacauu 3'</td>
<td>2</td>
<td>8.1</td>
<td>Adjacent to YOLCdelta3</td>
</tr>
<tr>
<td>TA4 5' aauuuuaucacaaauagcgccggccgcccccgccggaacauaaagauaauu 3'</td>
<td>3</td>
<td>9.4</td>
<td>On the antisense strand of YJL086C</td>
</tr>
</tbody>
</table>

FIGURE 2. Predicted common structures within the RNA sequences that are transcriptional activators.

<table>
<thead>
<tr>
<th>Transcribed sequence of the insert</th>
<th>Number of times isolated</th>
<th>β-gal with RNA plasmid alone</th>
<th>Position relative to open reading frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA1 5' agagaugcugccugaggcaauu 3'</td>
<td>1</td>
<td>23</td>
<td>On the antisense strand of YLR152C</td>
</tr>
<tr>
<td>TA2 5' uuaugacugcuacaaaaauagcgguuaucuaaauagaaacggccuucucacacccugaaacagau 3'</td>
<td>4</td>
<td>11</td>
<td>Adjacent to YBRWdelta17</td>
</tr>
<tr>
<td>TA3 5' uuaugguuaucacucguugccuacgagggcaauucuaauacauu 3'</td>
<td>2</td>
<td>8.1</td>
<td>Adjacent to YOLCdelta3</td>
</tr>
<tr>
<td>TA4 5' aauuuuaucacaaauagcgccggccgcccccgccggaacauaaagauaauu 3'</td>
<td>3</td>
<td>9.4</td>
<td>On the antisense strand of YJL086C</td>
</tr>
</tbody>
</table>
activators in the initial screening step is the inclusion of the yeast ADE2 gene on the activation domain plasmid, because plasmid loss then leads to an ade2 phenotype that is manifested by a red colony color. A comparable approach has been used to detect RNA-dependent positives in the screening of a cDNA library in an activation domain vector (Zhang et al., 1997).

Our demonstration that the three-hybrid assay can be used to identify RNA ligands for an RNA-binding protein from S. cerevisiae suggests that RNA libraries derived from other organisms may be fruitfully searched with this assay. The requirement for small inserts in the RNA expression plasmid and the relatively low transformation efficiency of yeast would favor the use of cDNA rather than genomic inserts for organisms with large genomes. Finally, RNA sequences that are capable of transcriptional activation when tethered to a promoter may find other uses in yeast genetic selections.

MATERIALS AND METHODS

Construction of small test libraries in pII/IRE-MS2

pII/IRE-MS2 expresses a hybrid RNA with binding sites for IRP1 and MS2 coat protein. A unique SmaI site between the sequences encoding the IRE and the coat protein binding sites was used to insert fragments of yeast genomic DNA. The genomic DNA was cut with AluI or Rsal, and fractionated on a 1.2% agarose gel. Fragments corresponding to 400, 200, and 100 bp were purified and ligated to the vector that had been cut with SmaI and treated with phosphatase.

Construction of the yeast RNA library

Chromosomal DNA from S. cerevisiae strain S288C was partially digested in three digests: by Msel (recognition site TTAA) and Tsp509I (AATT), by AluI (AGCT) and Rsal (GTAC), and by all four enzymes. Fragments ranging from 50 to 150 bp were purified from an agarose gel and the ends were made blunt with DNA polymerase I (Klenow fragment) where required. pII/MS2-2 was digested with SmaI, treated with calf intestine phosphatase, and ligated to the genomic fragments, and the ligation mix was used to transform electrocompetent HB101 cells.

Construction of U1 and Snp1 plasmids

The 5’ 175 nt and 5’ 45 nt of the SNR19 (U1) gene were obtained by PCR using as a template pXl7 (Liao et al., 1990), incorporating SmaI sites into the PCR primers. The PCR fragments were digested with SmaI and ligated into SmaI-cut pII/MS2-2 to construct pU1L1/MS2 and pU1L2/MS2, respectively. pSNP1/AD was constructed by ligating a PCR fragment containing the complete SNP1 open reading frame into the BglII site of the activation domain vector pACT.

RNA library screen

The RNA expression library was transformed into L40coat containing pSNP1/AD by the method of Gietz et al. (1992) and transformants were plated onto synthetic complete (SC) plates lacking tryptophan, leucine, uracil, and histidine and containing 0.5 mM 3-aminotriazole. Colonies were picked after 4–5 days, patched on to fresh plates, and when grown, tested for β-galactosidase activity by Xgal filter assay. β-galactosidase-positive colonies were grown nonselectively overnight in liquid YEPD media, and plated on SC-tryptophan-uracil for single colonies. These colonies were replica-plated to SC-leucine to identify colonies that had lost the pSNP1/AD plasmid and maintained the RNA plasmid. Two such colonies were picked from each plate and patched onto SC-tryptophan-uracil plates and tested for β-galactosidase activity to determine which RNA plasmids were Snp1-dependent (white colonies) or Snp1-independent (blue colonies) for reporter gene activity. Snp1-dependent RNA plasmids were tested for β-galactosidase activity in the presence of the pACTII vector. The plasmid that resulted in the highest level of β-galactosidase activity (40 U) conferred resistance to 50 mM 3-aminotriazole, whereas the plasmid resulting in 3.8 U of β-galactosidase activity conferred resistance to 2.5 mM 3-aminotriazole.

β-galactosidase assay

For quantitative assay, the procedure described in Miller (1972) was used, except that the substrate was chlorophenol red-β-D-galactopyranoside (Iwabuchi et al., 1993). Units were calculated as 1,000 × OD 574 divided by the product of the volume (mL) × time (min) × OD 600. For each transformant, at least two independent colonies were assayed and their values averaged.

ACKNOWLEDGMENTS

We thank Gary Stormo for help with the RNA structure predictions, Alia Qureshi-Emili for technical assistance, and Michael Rosbash for the U1 plasmid. This work was supported by grants from the National Institutes of Health (GM56906) and the National Science Foundation (Science and Technology Center BIR9214821). S.F. is an Investigator of the Howard Hughes Medical Institute.

Received November 24, 1998; returned for revision January 6, 1999; revised manuscript received January 11, 1999

REFERENCES

