Particle Design

Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition

Shengqing Xu, Zhihong Nie, Minseok Seo, Patrick Lewis, Eugenia Kumacheva,* Howard A. Stone, Piotr Garstecki, Douglas B. Weibel, Irina Gitlin, and George M. Whitesides*

Herein we describe a versatile new strategy for producing monodisperse solid particles with sizes from 20 to 1000 μm. The method involves the formation of monodisperse liquid droplets by using a microfluidic device and shaping the droplets in a microchannel and then solidifying these drops in situ either by polymerizing a liquid monomer or by lowering the temperature of a liquid that sets thermally. This method has the following features: 1) It produces particles with an exceptionally narrow range of sizes.[1] 2) A new level of control over the shapes of the particles is offered. 3) The mechanism for droplet formation allows the use of a wide variety of materials including gels, metals, polymers, and polymers doped with functional additives. 4) The procedure can be scaled up to produce large numbers of particles.

A number of methods exist for making inorganic and organic particles with narrow polydispersity. Inorganic colloids are typically prepared by precipitation reactions from organometallic precursors.[2,3] Polymer colloids with sizes from 20 nm to approximately 1 μm are usually prepared by a variation of emulsion polymerization techniques.[4] Larger beads are accessible through miniemulsion polymerization.[5]
membrane emulsification,[6] and multistage processes.[7,4] Most of these methods are specific to a particular material. A technique sufficiently general to be applicable to a range of materials and allow the production of monodisperse colloids with control over size and shape has not been demonstrated and would be widely useful.

We have used a new type of microfluidic flow-focusing device (MFFD)[11] to generate droplets of different sizes and shapes and narrow dispersity, and these droplets were solidified in situ. The MFFDs were prepared in either poly(dimethylsiloxane) or polyurethane by using soft lithography.[9,10] An appropriate choice of the material of fabrication produces extremely monodisperse droplets. Furthermore, there are obvious differences with the ink-jet printing technologies that also produce droplets with uniform size distributions. Breakup in ink-jet printers is governed by the competition between surface tension and inertial forces rather than viscous forces, and it occurs in an atmosphere of gas rather than in coflowing, immiscible liquids as in the case of MFFD.

We obtained particles by solidifying these droplets either photochemically (by photopolymerization of monomer fluids, see Figure 1b) or thermally (Figure 1c). The volume of the droplets \((V)\) was controlled by the flow rates of the continuous and dispersed phases. The diameter of an undeformed (regular) spherical droplet is given by \(d_s = (6V/\pi)^{1/3}\) (Figure 1d). Nonspherical droplets form when \(d_s\) is larger than at least one of the dimensions of the outlet channel. In such channels, because of confinement, breakup is not followed by shape relaxation of droplets into spheres. In wide channels, \(w > d_s\) (\(w = \text{width}\)) of height \(h < d_s\), the drops assume a discoid shape (Figure 1e) with circular interfaces with the top and bottom walls of the channel. The diameter, \(d_s\), of these interfaces is set by the height of the channel and the volume of the droplet. For channels with small aspect ratios \((h/d_s)\), the droplets have a cylindrical geometry (the curvature at the liquid–liquid interface can be neglected), and the volume of these droplets is \(d_s \approx 2(V/h)^{1/2}\). If both the height and the width of the channel are smaller than \(d_s\), the droplet makes contact with all of the channel walls and assumes a rodlike morphology (Figure 1f). The length \(h_{eq}\) of elongated liquid plugs yields \(h_{eq} \approx V/w/h\). The two aspect ratios \((h/l_{eq}\) and \(w/l_{eq}\)) can be controlled independently by changing the volume of the droplet and the ratio of the height to the width of the channel.

Polymerization produced monodisperse solid particles from tripropylene glycol diacrylate (TPGDA), dimethylacrylate oxypropyldimethylsiloxane (DMOS), divinylbenzene (DVB), ethyleneglycol diacrylate, and pentaerythritol triacrylate in aqueous suspensions with sodium dodecylsulfate (SDS, 2 wt%) as a surfactant. Monomers were mixed with a photoinitiator, 1-hydroxycyclohexylphenyl ketone (4 wt%), and photopolymerized in a wavy channel (Figure 1b) by illumination with UV light (400 W, \(\lambda = 330–380\) nm). The polymerization time was typically between 15 and 800 s. The diameter of the microspheres (controlled by the rates of flow of the water and droplet phases and the geometry of the MFFD) was between 20 and 200 \(\mu\)m. Figure 2a shows a typical SEM image of spherical polyTPGDA beads polymerized in the MFFD; a colloidal crystal formed by these microspheres is illustrated in Figure 2b. We also prepared
polymeric rods, disks, and ellipsoids by trapping the non-
spherical confined monomer droplets (shown in Figure 1e
and f) in the solid state. We obtained disks and rods with
aspect ratios as large as 1/3 and 1/12 (Figure 2c and d,
respectively). Ellipsoids were formed at high flow rates of the
continuous phase (Figure 1b).

The conversion of monomer to polymer was close to
100%. Generally, the dimensions of polymer microspheres
were 5–10% smaller than the corresponding droplets owing
to monomer shrinkage during photopolymerization. A thin
wetting layer of the continuous phase prevented clogging of
the channels by the solid particles. The rate of microbead
production was up to 250 particless$^{-1}$. The polydispersity
(defined as the standard deviation in the particle diameter
divided by the mean particle diameter) of polymerized
particles was 1.5% and was similar to the polydispersity of
the corresponding spherical droplets.

Figure 2a shows the variation in V with the ratio of the
flow rates of the aqueous phase to the monomer phase.
Increasing the ratio of flow rates to a value greater than 82
produced smaller, spherical droplets of DVB and TPGDA
(filled symbols). Figure 3b–d demonstrates the size distribu-
tion of polyTPGDA spheres, disks, and rods. Particle poly-
dispersity in all cases was less than 1.6% (for disks and rods
the standard deviation σ of the diameter and length was
divided by the mean values of the droplet diameter and
length, respectively).

We also obtained particles by thermally-induced gelation
or liquid–solid phase transition by operating at a temperature
within the fluid-focusing orifice, T_{FF}, that is greater than the
temperature for gelation or the liquid–solid phase transition,
T_0, and by cooling the outlet channel to a temperature, $T < T_0$,
to solidify the droplets (the configuration in Figure 1c). The
particles were prepared from two materials: an aqueous
solution of agarose ($T_0 = 37^\circ C$) and a low-melting bismuth
alloy ($T_0 = 47^\circ C$). In both cases we used a continuous phase
composed of a 3 wt% solution of surfactant, sorbitan mono-
oleate (span 80), in hexadecane. Figure 2f illustrates agarose
disks whose height was predetermined by the height of the
channel (30 and 60 μm). By varying the flow rates of the
continuous and dispersant phase, disks with diameters from
50 to 250 μm were obtained. The polydispersity of the disks

Figure 2. Optical microscopy images of polyTPGDA particles: a) microspheres, b) crystal of microspheres, c) rods, d) disks, and e) ellipsoids. Optical microscopy images of f) agarose disks and g) bismuth alloy ellipsoids produced using thermal solidification; inset: micrograph of the bismuth alloy ellipsoids at higher magnification.

Figure 3. a) A log–log plot of the volume of the droplets versus the ratio of the rates of flow of the aqueous and monomer phases (water:monomer): dimethacrylate oxypropyl(dimethylsiloxane (circles); divinyl benzene (triangles); TPGDA (squares). The rate of flow of the monomer was 0.04 mLh$^{-1}$. Open symbols represent disks, filled symbols correspond to spheres. b) and c) Distribution of diameters (d) of poly(TPGDA) spheres and disks, respectively, and d) length (l) of rods. The experimental points were fitted with a Gaussian distribution. The resulting polydispersities are 1.5% for spheres, 1.1% for disks, and 1% for rods.
did not exceed 3%. Figure 2 g shows bismuth alloy ellipsoids made in the MFFD geometry illustrated in Figure 1 c. The width and the height of the channel were 60 and 60 μm, respectively. The mean width of these ellipsoids was 58 μm (polydispersity 3.2%) and their length was 94 μm (polydispersity 7.8%). The rate of making both agarose and solder particles was controlled by the flow rates applied to the system and ranged between 100 and 1000 particles s⁻¹.

We also produced multicomponent polymer-based beads that include copolymer particles, fluorescent particles containing dyes or nanoparticles, polymer liquid crystals, and microporous particles. Fluorescent microspheres (Figure 4 a) were synthesized by copolymerizing methyl acrylate, which was covalently attached to UV, visible, or near-IR dyes, with TPGDA or by polymerizing TPGDA admixed with 4-nm-diameter CdSe quantum dots (Figure 4 b). Other types of TPGDA or by polymerizing TPGDA admixed with 4-nm-diameter CdSe quantum dots (Figure 4 b). Other types of hybrid microspheres were obtained by polymerizing monomers mixed with metal or magnetic nanoparticles. We synthesized liquid crystal (LC) polymer microbeads by polymerizing TPGDA admixed with 4-cyano-4′-pentylbiphenyl polyTPGDA microspheres. Inset shows particle morphology at low polymerization rate (see text). d) SEM image of a porous polyTPGDA microsphere.

In summary, the strategy described in the present work has four significant advantages: 1) it offers extensive control over the size and polydispersity of the particles, 2) particles with various shapes can be generated, 3) a range of materials can be applied, including heterogeneous multiphase liquids and suspensions, and 4) useful quantities of particles (up to 10⁸ particles h⁻¹) can be produced. Control over the composition of the particles gives access to a variety of material properties. Optically and magnetically functionalized polymeric beads result from polymerization of monomer droplets doped with dyes, semiconductor quantum dots, magnetic nanoparticles, and liquid crystals. This work provides a route to materials for a systematic study of entropically ordered mixtures of particles with different shapes.[16–18]

We believe that the hydrodynamic mechanism governing the breakup of the continuous liquid stream into monodisperse droplets and the processes of thermal solidification and polymerization should both be applicable to the controlled formation of submicron particles.

Received: October 6, 2004
Published online: December 21, 2004

Keywords: copolymerization · gels · microfluidics · monodisperse particles · polymers

[1] According to the standards of the National Institute of Standards and Technology (NIST): “a particle distribution may be considered monodisperse if at least 90% of the distribution lies within 5% of the median size” (Particle Size Characterization, Special Publication 960–961, January 2001). To determine the standard deviations, we fit the experimental histograms of the size of the particles with Gaussian distributions. The standard deviations were typically on the order of 1–2% of the mean size, complying with the NIST definition of monodispersity (95% of the particles are within two standard deviations of the mean size).