Supporting Information

Optimized Diazo Scaffold for Protein Esterification
Kalie A. Mix, Ronald T. Raines*

Table of Contents

1. General Experimental.............. S2
2. Synthesis and Characterization Data.............. S2
3. Measurement of Reaction Rate Constants.............. S11
4. Esterification Reactions.............. S12
 A. Esterification of BocGlyOH.............. S12
 B. Esterification of Other Small Molecules.............. S16
5. Protein Labeling.............. S19
6. Ultraviolet Spectra of Diazos Compound 2.............. S21
7. References.............. S21
8. NMR Spectra.............. S22
1. General Experimental

Materials. Silica gel (40 µm; 230–400 mesh) was from SiliCycle. Reagents were obtained from commercial sources and used without further purification. Dichloromethane and tetrahydrofuran were dried over a column of alumina. Thin-layer chromatography (TLC) was performed on plates of EMD 250 µm silica 60-F254.

Solvent removal. The phrase “concentrated under reduced pressure” refers to the removal of solvents and other volatile materials using a rotary evaporator at water aspirator pressure (<20 torr) while maintaining a water bath below 40 °C. Residual solvent was removed from samples at high vacuum (<0.1 torr).

NMR spectroscopy. 1H and 13C NMR spectra for all compounds were acquired with Bruker spectrometers in the National Magnetic Resonance Facility at Madison operating at 400, 500, 600, or 750 MHz. Chemical shift data are reported in units of δ (ppm) relative to an internal standard (residual solvent or TMS).

Mass spectrometry. Electrospray ionization (ESI) mass spectrometry for small-molecule characterization was performed with a Micromass LCT at the Mass Spectrometry Facility in the Department of Chemistry at the University of Wisconsin–Madison. Matrix-assisted laser desorption-ionization–time-of-flight (MALDI–TOF) mass spectrometry for protein characterization was performed with a Voyager DE-Pro instrument at the Biophysics Instrumentation Facility at the University of Wisconsin–Madison.

2. Synthesis and Characterization Data

Preparation of α-Bromoacid S1

\[
\text{4-Methoxyphenylacetic acid (5.000 g, 30.10 mmol) was dissolved in CCl}_4 (50 \text{ mL}). \text{N-Bromosuccinimide (5.625 g, 31.6 mmol) and AIBN (0.985 g, 6.0 mmol) were added. The resulting solution was heated to 80 °C and allowed to reflux overnight. The succinimide by-product was removed by filtration, and the solution was concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with 1:1 EtOAc/hexanes to afford S1 (5.705 g, 78%) as a white solid.**

Data for S1: 1H NMR (500 MHz, CDCl$_3$, δ): 7.50 (d, 2H, $J = 8.8$ Hz), 6.90 (d, 2H, $J = 8.8$ Hz), 5.36 (s, 1H), 3.82 (s, 1H.) 13C NMR (125 MHz, CDCl$_3$, δ): 173.4, 160.5, 130.2, 126.8, 114.3, 55.4, 45.9. HRMS (ESI) m/z calcd for C$_9$H$_7$BrO$_3$ [M–H] $^-$ 242.9662; found, 242.9660.
Preparation of α-Azido Acid S2

α-Bromo-4-methoxyphenylacetic acid S1 (0.802 g, 3.3 mmol) was dissolved in 1:1 THF/H2O (4 mL). Sodium azide (0.429 g, 6.6 mmol) was added, and the resulting solution was stirred overnight. The solution was then concentrated under reduced pressure, and the residue was dissolved in EtOAc (50 mL). The resulting solution was washed with 0.1 M HCl (2 × 50 mL). The organic layer was dried over anhydrous Na2SO4(s) and concentrated under reduced pressure to afford S2 (0.412 g, 62%) as a white solid.

Data for S2: 1H NMR (500 MHz, CDCl3, δ): 7.35 (d, 2H, J = 8.7 Hz), 6.95 (d, 2H, J = 8.7 Hz), 5.00 (s, 1H), 3.83 (s, 3H). 13C NMR (125 MHz, CDCl3, δ): 173.5, 160.5, 129.1, 125.2, 114.6, 64.6, 55.4. HRMS (ESI–) m/z calcd for C9H9N3O3 [M–H]– 206.0571; found, 206.0577.

Preparation of α-azido 4-Methoxyphenylacetic Amide S3

α-Azido-4-methoxyphenylacetic acid S2 (0.412 g, 2.0 mmol) was dissolved in THF (5 mL), and the resulting solution was cooled in an ice bath. N-Hydroxysuccinimide (0.230 g, 2.0 mmol) was added, followed by the portion-wise addition of DCC (0.453 g, 2.2 mmol). The resulting solution was warmed to ambient temperature and stirred overnight. The slurry was removed by filtration, and the solution was concentrated under reduced pressure. The residue was dissolved in EtOAc (10 mL) and washed with saturated aqueous NaHCO3 (2 × 10 mL). The organic layer was dried over anhydrous Na2SO4(s) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with 3:7 EtOAc/hexanes, and used immediately. The NHS ester (0.4 g, 1.2 mmol) was dissolved in CH2Cl2 (10 mL). Benzylamine (0.10 mL, 1.3 mmol) was added dropwise, and the resulting solution was stirred overnight. The solution was then concentrated under reduced pressure. The residue was dissolved in EtOAc (10 mL) and washed with 0.1 M HCl (2 × 10 mL) and saturated aqueous NaHCO3 (2 × 10 mL). The organic layer was dried over anhydrous anhydrous Na2SO4(s) and concentrated under reduced pressure to afford S3 (0.255 g, 43%) as a white solid.

Data for S3: 1H NMR (500 MHz, CD3CN, δ): 7.34–7.30 (m, 4H), 7.27–7.23 (m, 3H), 6.97 (d, 2H, J = 8.8 Hz), 4.99 (s, 1H), 4.37 (m, 2H), 3.80 (s, 3H). 13C NMR (125 MHz, CD3CN, δ): 169.4, 161.0, 139.8, 130.2, 129.4, 128.4, 128.2, 128.0, 115.1, 66.6, 55.9, 43.6. HRMS (ESI+) m/z calcd for C16H16N4O2 [M+H]+ 297.1347; found, 297.1346.
Preparation of α-Diazo Amide 1

α-Azidoamide S3 (0.356 g, 1.2 mmol) was dissolved in 20:3 MeCN/H2O (12 mL), and the resulting solution was cooled in an ice bath. N-Succinimidyl 3-(diphenylphosphino)propionate (0.440 g, 1.24 mmol) was added slowly. The solution was warmed to ambient temperature and stirred until all azide was consumed (~12 h as monitored by TLC). DBU (0.21 mL, 1.4 mmol) was added, and the solution was stirred for 1 h. The solution was then diluted with brine (10 mL) and extracted with CH2Cl2 (2 × 20 mL). The organic layer was dried over anhydrous Na2SO4(s) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with 1:1 EtOAc/hexanes to afford 1 (0.095 g, 28%) as an orange solid.

Data for 1: 1H NMR (500 MHz, CD3CN, δ): 7.37 (d, 2H, J = 8.9 Hz), 7.34–7.29 (m, 4H), 7.26–7.23 (m, 1H), 4.43 (d, 2H, J = 6.2 Hz), 3.80 (s, 3H). 13C NMR (125 MHz, CDCl3, δ): 165.4, 159.7, 138.4, 130.3, 128.7, 127.7, 127.5, 117.5, 115.3, 63.1, 55.4, 44.1. HRMS (ESI+) m/z calcd for C16H15N3O2 [M+H]+ 282.1238; found, 282.1232.

Preparation of α-Azido Acid S4

Imidazole-1-sulfonyl-azide hydrochloride was prepared as reported previously.1 Spectral data and yields match those reported previously. α-Amino-4-methylphenylacetic acid (2.000 g, 12.1 mmol) was dissolved in MeOH (24 mL). DBU (3.61 mL, 24.2 mmol), CuSO4 (0.300 g, 1.2 mmol), and azide (3.030 g, 14.5 mmol) were added sequentially. The resulting solution was heated to 40 °C and stirred overnight. The solution was then concentrated under reduced pressure. The residue was dissolved in EtOAc (30 mL) and washed twice with 1 M aqueous HCl (2 × 30 mL). The organic layers were combined and dried over anhydrous Na2SO4(s). The solution was concentrated under reduced pressure. The residue was dissolved in benzene and recrystallized from benzene and hexanes to afford S4 (0.390 g, 17%) as a white solid.
Data for S4: \(^1\)H NMR (600 MHz, CDCl\(_3\), \(\delta\)): 7.30 (d, 2H, \(J = 8.1\) Hz), 7.24 (d, 2H, \(J = 7.8\) Hz), 5.01 (s, 1H), 2.37 (s, 3H). \(^13\)C NMR (150 MHz, CDCl\(_3\), \(\delta\)): 173.4, 139.7, 130.2, 129.9, 127.6, 64.9, 21.2. HRMS (ESI–) \(m/z\) calcd for C\(_9\)H\(_9\)N\(_3\)O\(_2\) [M–H]– 190.0622; found, 190.0625.

Preparation of α-Azido-methylphenylacetic Amide S5

![Diagram of reaction]

α-Azido 4-methylphenylacetic acid S4 (2.204 g, 11.6 mmol) was dissolved in THF (30 mL) and cooled in an ice bath. N-Hydroxysuccinimide (1.334 g, 11.6 mmol) was added, followed by portion-wise addition of DCC (2.637 g, 12.8 mmol). The resulting solution was warmed to ambient temperature and stirred overnight. The slurry was removed by filtration, and the solution was concentrated under reduced pressure. The residue was dissolved in EtOAc (30 mL). The resulting solution was washed with saturated aqueous NaHCO\(_3\) (2 × 30 mL). The organic layer was dried over anhydrous Na\(_2\)SO\(_4\), concentrated under reduced pressure, and used immediately. The NHS ester (2.5 g, 8.7 mmol) was dissolved in CH\(_2\)Cl\(_2\) (30 mL). Benzylamine (0.98 mL, 9.6 mmol) was added dropwise, and the resulting solution was stirred overnight. The solution was then concentrated under reduced pressure. The residue was dissolved in EtOAc (30 mL) and washed with 0.1 M HCl (2 × 30 mL) and saturated aqueous NaHCO\(_3\) (2 × 30 mL). The organic layer was dried over anhydrous anhydrous Na\(_2\)SO\(_4\) and concentrated under reduced pressure to afford S5 (1.988 g, 61%) as a white solid.

Data for S5: \(^1\)H NMR (500 MHz, CD\(_3\)CN, \(\delta\)): 7.33–7.28 (m, 4H), 7.26–7.22 (m, 5H), 5.00 (s, 1H), 4.36 (dd, 2H, \(J = 1.8, 6.2\) Hz), 2.35 (s, 3H). \(^13\)C NMR (125 MHz, CD\(_3\)CN, \(\delta\)): 169.2, 140.0, 139.8, 133.5, 130.4, 129.4, 128.8, 128.2, 128.0, 66.9, 43.6, 21.1. HRMS (ESI+) \(m/z\) calcd for C\(_{16}\)H\(_{16}\)N\(_4\)O [M+H]\(^+\) 281.1397; found, 281.1395.

Preparation of α-Diazo-methylphenylacetic Amide 2

![Diagram of reaction]

α-Azido 4-methylphenylacetic amide S5 (1.995 g, 7.1 mmol) was dissolved in 20:3 MeCN/H\(_2\)O (50 mL), and the resulting solution was cooled in an ice bath. N-Succinimidyl 3-(diphenylphosphino)propionate (2.769 g, 7.8 mmol) was added slowly. The solution was warmed to ambient temperature and stirred until all azide was consumed (~24 h as monitored by TLC). DBU (1.27 mL, 8.5 mmol) was added, and the solution stirred for 45 min. The solution was then diluted with brine (10 mL) and extracted with CH\(_2\)Cl\(_2\) (2 × 30 mL). The organic layer
was dried over anhydrous Na₂SO₄(s) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with 4:6 EtOAc/hexanes to afford 2 (1.038 g, 55%) as an orange solid.

Data for 2: ¹H NMR (600 MHz, CD₃CN, δ): 7.33–7.23 (m, 9H), 6.63 (s, 1H), 4.44 (d, 2H, J = 6.2 Hz), 2.34 (s, 3H). ¹³C NMR (150 MHz, CD₃CN, δ): 165.5, 140.7, 138.1, 130.9, 129.3, 128.2, 128.1, 127.9, 124.1, 63.74, 44.0, 21.1. HRMS (ESI⁺) m/z calcd for C₁₆H₁₅N₃O [M+H]⁺ 266.1288; found, 266.1292.

General Procedure for Preparation of Azides S6–S8

![Chemical structure of S6, S7, S8](attachment:image.png)

Each α-bromophenylacetic acid (23.3 mmol) was dissolved in a solution of 1:1 THF/H₂O (24 mL). Sodium azide (1.512 g, 46.5 mmol) was added, and the resulting solution was stirred overnight. The solution was then concentrated under reduced pressure. The residue was dissolved in EtOAc (50 mL), and washed with 0.1 M HCl (2 × 50 mL). The organic layer was dried over anhydrous Na₂SO₄(s) and concentrated under reduced pressure to afford a white solid (S6: 4.076 g, 99%; S7: 4.016 g, 89%; S8: 3.761 g, 77%).

Data for Azide S6: ¹H NMR (400 MHz, CDCl₃, δ): 7.43 (m, 5H), 5.05 (s, 1H). ¹³C NMR (400 MHz, CDCl₃, δ): 174.0, 133.1, 129.6, 129.2, 127.7, 65.1. HRMS (ESI⁺) m/z calcd for C₈H₇N₃O₂ [M+H]⁺ 177.0533; found, 177.0538.

Data for Azide S7: ¹H NMR (400 MHz, CDCl₃, δ): 7.41 (dd, 2H, J = 5.1, 8.5 Hz), 7.12 (t, 2H, J = 8.4 Hz), 5.05 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 175.0, 163.5 (d, J = 249.6 Hz), 129.8 (d, J = 8.5 Hz) 129.1 (d, J = 2.6 Hz), 116.5 (d, J = 22.1 Hz), 64.5. HRMS (ESI⁺) m/z calcd for C₈H₆F₃N₃O₂ [M–H]⁻ 194.0371; found, 194.0378.

Data for Azide S8: ¹H NMR (400 MHz, CDCl₃, δ): 7.41 (d, 2H, J = 8.4 Hz), 7.37 (d, 2H, J = 8.3 Hz), 5.06 (s, 1H). ¹³C NMR (125 MHz, CDCl₃, δ): 174.7, 135.8, 131.5, 129.5, 129.0, 64.3. HRMS (ESI⁻) m/z calcd for C₈H₆ClN₃O₂ [M–H]⁻ 210.0075; found, 210.0078.

General Procedure for Preparation of Amides S9–S11

![Chemical structure of S9, S10, S11](attachment:image.png)
Each \(\alpha \)-azidoacetic acid (S6–S8) (15.4 mmol) was dissolved in THF (30 mL), and the resulting solution was cooled in an ice bath. \(N \)-Hydroxysuccinimide (NHS) (1.772 g, 15.4 mmol) was added, followed by portion-wise addition of DCC (3.177 g, 15.4 mmol). The solution was warmed to ambient temperature and stirred overnight. The slurry was removed by filtration, and the solution was concentrated under reduced pressure. The residue was dissolved in EtOAc (50 mL) and washed with saturated aqueous NaHCO₃ (2 × 50 mL). The organic layer was dried over anhydrous Na₂SO₄(s) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with 1:1 EtOAc/hexanes. The resulting solution was then concentrated under reduced pressure and used immediately. The NHS ester (10.5 mmol) was dissolved in CH₂Cl₂ (105 mL). Benzylamine (1.16 mL, 10.6 mmol) was added drop-wise, and the resulting solution was stirred overnight. The solution was concentrated under reduced pressure. The residue was dissolved in EtOAc (50 mL) and washed with 0.1 M HCl (2 × 50 mL) and saturated aqueous NaHCO₃ (2 × 50 mL). The organic layer was dried over anhydrous Na₂SO₄(s) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with 30% EtOAc/hexanes to afford a white solid (S9: 2.384 g, 58% for 2 steps; S10: 2.062 g, 47% for 2 steps; S11: 2.179 g, 47% for 2 steps).

Data for Amide S9: \(^1H \) NMR (500 MHz, CD₃CN, \(\delta \)): 7.43–7.42 (m, 5H), 7.31–7.29 (m, 2H), 7.26–7.22 (m, 3H), 5.06 (s, 1H), 4.37 (d, 2H, \(J = 6.2 \)). \(^{13}C \) NMR (125 MHz, CDCl₃, \(\delta \)): 167.8, 137.5, 134.9, 129.2, 129.1, 128.8, 127.8, 127.73, 127.67, 67.4, 43.7. HRMS (ESI⁺) \(m/z \) calcd for C₁₅H₁₄N₄O [M+H]+ 267.1241; found, 267.1241.

Data for Amide S10: \(^1H \) NMR (600 MHz, CD₃CN, \(\delta \)): 7.45–7.42 (dd, 2H, \(J = 5.4, 8.7 \) Hz), 7.23–7.30 (m, 2H), 7.26–7.22 (m, 3H), 7.18–7.15 (m, 2H), 5.08 (s, 1H), 4.37 (dd, 2H, \(J = 3.0, 6.2 \) Hz). \(^{13}C \) NMR (100 MHz, CDCl₃, \(\delta \)): 167.6, 163.1 (d, \(J = 249.2 \) Hz), 137.5, 130.9 (d, \(J = 2.0 \) Hz), 129.5 (d, \(J = 8.5 \) Hz), 128.8, 127.8, 116.2 (d, \(J = 21.8 \) Hz), 105.0, 66.6, 43.7. 43.7, HRMS (ESI⁺) \(m/z \) calcd for C₁₅H₁₃FN₄O [M+H]+ 285.1147; found, 285.1150.

Data for Amide S11: \(^1H \) NMR (500 MHz, CD₃CN, \(\delta \)): 7.44–7.39 (m, 4H), 7.33–7.27 (m, 2H), 7.25–7.22 (m, 3H), 5.08 (s, 1H), 4.36 (m, 2H). \(^{13}C \) NMR (125 MHz, CD₃CN, \(\delta \)): 168.8, 139.7, 135.5, 135.2, 130.4, 129.9, 129.4, 128.2, 128.0, 66.3, 43.6. HRMS (ESI⁺) \(m/z \) calcd for C₁₅H₁₃ClN₄O [M+H]+ 301.0851; found, 301.0850.

General Procedure for Preparation of Diazo Compounds 3–5

Each \(\alpha \)-azidobenzylamide (S9–S11) (7.3 mmol) was dissolved in a solution of 20:3 THF:H₂O (75 mL) and cooled in an ice bath. \(N \)-Succinimidyl 3-(diphenylphosphino)propionate (2.734 g,
7.7 mmol) was added slowly. The resulting solution was warmed to ambient temperature and stirred until all azide was consumed (6–12 h as monitored by TLC). Saturated aqueous NaHCO₃ (73 mL) was added, and the solution was stirred overnight. The solution was then diluted with brine (50 mL) and extracted with CH₂Cl₂ (2 × 70 mL). The organic layer was dried over anhydrous Na₂SO₄(s) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with 1:1 EtOAc/hexanes to afford an orange solid (3: 1.012 g, 55%; 4: 0.887 g, 45%; 5: 0.877 g, 42%).

Data for Diazo 3: ¹H NMR (600 MHz, CD₃CN, δ): 7.46–7.41 (m, 4H), 7.34–7.28 (m, 4H), 7.28–7.23 (m, 2H), 6.73 (s, 1H), 4.44 (d, 2H, J = 6.1 Hz). ¹³C NMR (125 MHz, CD₃CN, δ): 165.1, 140.6, 130.2, 129.3, 128.2, 127.8, 127.7, 127.6, 127.4, 64.0, 43.9. HRMS (ESI⁺) m/z calcd for C₁₅H₁₃N₃O [M+H]⁺ 252.1132; found, 252.1125.

Data for Diazo 4: ¹H NMR (500 MHz, CD₃CN, δ): 7.49–7.46 (dd, 2H, J = 5.4, 8.6 Hz), 7.34–7.29 (m, 4H), 7.26–7.23 (m, 1H), 7.20–7.16 (t, 2H, J = 8.8), 6.70 (s, 1H), 4.43 (d, 2H, J = 6.2). ¹³C NMR (125 MHz, CD₃CN, δ): 165.2, 162.5 (d, J = 244.9 Hz), 140.6, 130.2 (d, J = 8.3 Hz), 129.2, 128.1, 127.8, 123.4 (d, J = 3.1 Hz), 116.9 (d, J = 22.1 Hz), 62.99, 43.8. HRMS (ESI⁺) m/z calcd for C₁₅H₁₂FN₃O [M+H]⁺ 270.1038; found, 270.1032.

Data for Diazo 5: ¹H NMR (500 MHz, CD₃CN, δ): 7.45 (d, 2H, J = 8.8 Hz), 7.42 (d, 2H, 8.9 Hz), 7.35–7.30 (m, 4H), 7.28-7.26 (m, 1H), 6.79 (s, 1H), 4.44 (d, 2H, J = 6.1 Hz). ¹³C NMR (125 MHz, CDCl₃, δ): 164.1, 138.1, 133.5, 129.9, 128.8, 128.5, 127.8, 127.7, 124.7, 63.5, 44.2. HRMS (ESI⁺) m/z calcd for C₁₅H₁₂ClN₃O [M+H]⁺ 286.0742; found, 286.0748.

Preparation of Ester S12

4-(Trifluoromethyl)phenylacetic acid (5.000 g, 24.5 mmol) was dissolved in THF (50 mL), and the resulting solution was cooled in an ice bath. N-Hydroxysuccinimide (2.818 g, 24.5 mmol) was added, followed by DCC (5.047 g, 24.5 mmol). The solution was warmed to ambient temperature and stirred overnight. The slurry was removed by filtration, and the solution was concentrated under reduced pressure. The residue was dissolved in EtOAc (50 mL) and washed with saturated aqueous NaHCO₃ (2 × 50 mL). The organic layer was dried over anhydrous Na₂SO₄(s) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with 1:1 EtOAc/hexanes to afford S12 (7.301 g, 99%) as a white solid.

Data for Ester S12: ¹H NMR (400 MHz, CDCl₃, δ): 7.63 (d, 2H, J = 7.99 Hz), 7.48 (d, 2H, J= 7.92 Hz), 4.00 (s, 2H), 2.84 (s, 4H). ¹³C NMR (125 MHz, CDCl₃, δ): 168.9, 166.1, 135.27, 130.2 (q, J = 32.6 Hz), 129.7, 125.8 (q, J = 3.7 Hz), 123.9 (q, J = 272.1 Hz), 37.4, 25.6. HRMS (EI⁺) m/z calcd for C₁₃H₁₀F₃NO₄ [M+H]⁺ 301.0557; found, 301.0565.
Preparation of α-Bromoester S13

Ester S12 (3.763 g, 12.5 mmol) was dissolved in CCl4 (25 mL). N-Bromosuccinimide (3.329 g, 18.7 mmol) and AIBN (0.394 g, 2.4 mmol) were added. The resulting solution was heated to 80 °C and allowed to reflux overnight. The succinimide by-product was removed by filtration, and solution was concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with 1:1 EtOAc/hexanes to afford S13 (2.037 g, 43%) as a white solid.

Data for S13: \(^1\text{H NMR}\): 7.72 (d, 2H, J = 8.3 Hz), 7.69 (d, 2H, J = 8.6 Hz), 5.68 (s, 1H), 2.86 (s, 4H). \(^{13}\text{C NMR}\): 168.2, 163.8, 137.7, 131.9 (q, J = 32.8 Hz), 129.2, 126.1 (q, J = 3.7 Hz), 123.6 (q, J = 272.5 Hz), 40.7, 25.6. HRMS (EI\(^+\)) \text{m/z} \text{calcd for C}_{13}\text{H}_{9}\text{BrF}_{3}\text{NO} \text{[M+H]}^+ 378.9662; found, 378.9667.

Preparation of α-Bromoamide S14

α-Bromoester S13 (3.297 g, 8.7 mmol) was dissolved in CH\(_2\)Cl\(_2\) (80 mL). Benzylamine (0.91 mL, 8.7 mmol) was added drop-wise, and the resulting solution was stirred overnight. The solution was concentrated under reduced pressure, and the residue was dissolved in EtOAc (50 mL). The solution was washed with 0.1 M HCl (2 \times 50 mL) and saturated aqueous NaHCO\(_3\) (2 \times 50 mL). The organic layers were dried over anhydrous Na\(_2\)SO\(_4\)(s) and concentrated under reduced pressure. The residue was purified with chromatography on silica gel, eluting with 1:1 EtOAc/hexanes to afford S14 (1.456 g, 45%) as a white solid.

Data for S14: \(^1\text{H NMR}\): 7.76 (d, 2H, J = 8.3 Hz), 7.69 (d, 2H, J = 8.6 Hz), 7.51 (s, 1H), 7.35 (t, 3H, J = 7.4 Hz), 7.29 (t, 3H, J = 7.7 Hz), 5.59 (s, 1H), 4.40 (m, 2H). \(^{13}\text{C NMR}\): 166.2, 141.2, 137.1, 131.1 (q, J = 32.8 Hz), 128.9, 128.8, 128.0, 127.8, 125.9 (q, J = 3.7 Hz), 123.7 (q, J = 272.3 Hz), 49.8, 44.6. HRMS (ESI\(^+\)) \text{m/z} \text{calcd for C}_{16}\text{H}_{13}\text{BrF}_{3}\text{NO} \text{[M+H]}^+ 372.0206; found, 372.0210.
Preparation of α-Azidoamide S15

\[
\begin{align*}
\text{S14} & \quad \text{NaN}_3 & \quad \text{S15} \\
\end{align*}
\]

α-Bromoamide S14 (1.823 g, 4.9 mmol) was dissolved in 1:1 THF/H₂O. Sodium azide (0.637 g, 9.8 mmol) was added, and the resulting solution was stirred overnight. The solution was concentrated under reduced pressure. The residue was dissolved in EtOAc (50 mL), and the resulting solution was washed twice with 0.1 M HCl (2 × 50 mL). The organic layer was dried over anhydrous Na₂SO₄(s) and concentrated under reduced pressure to afford S15 (1.018 g, 62%) as a white solid.

Data for S15: ¹H NMR (500 MHz, CD₃CN, δ): 7.74 (d, 2H, J = 8.1 Hz), 7.60 (d, 2H, J = 8.0 Hz), 7.42 (s, 1H), 7.31 (m, 2H), 7.24 (m, 3H), 5.19 (s, 1H), 4.37 (d, 2H, J = 6.2 Hz). ¹³C NMR (125 MHz, CD₃CN, δ): 170.2, 142.8, 141.4, 132.9 (q, J = 32.3 Hz), 131.2, 131.1, 130.0, 129.8, 128.5 (q, J = 3.9 Hz), 126.9 (q, J = 271.3 Hz), 68.2, 45.4. HRMS (ESI⁺) m/z calcd for (C₁₆H₁₃F₃N₄O) [M+H]^+ 335.1115; found, 335.1112.

Preparation of α-Diazoamide 6

\[
\begin{align*}
\text{S15} & \quad \text{Ph₂P} & \quad \text{O} & \quad \text{O} & \quad \text{N} & \quad \text{O} & \quad \text{O} & \quad \text{N} & \quad \text{O} & \quad \text{N₂} & \quad \text{S15} & \quad \text{N₂} & \quad \text{S15} \\
\end{align*}
\]

α-Azidoamide S15 (1.002 g, 2.99 mmol) was dissolved in 20:3 THF/H₂O (30 mL), and the resulting solution was cooled in an ice bath. N-Succinimidyld 3-(diphenylphosphino)propionate (1.115 g, 3.14 mmol) was added slowly. The solution was warmed to ambient temperature and stirred until all azide was consumed (~5 h as monitored by TLC). Saturated aqueous NaHCO₃ (30 mL) was added, and the solution was stirred overnight. The solution was diluted with brine (30 mL) and extracted with CH₂Cl₂ (2 × 30 mL). The organic layer was dried over anhydrous Na₂SO₄(s) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, eluting with 1:1 EtOAc/hexanes to afford 6 (0.382 g, 40%) as an orange solid.

Data for 6: ¹H NMR (400 MHz, CDCl₃, δ): 7.65 (d, 2H, J = 8.0 Hz), 7.50 (d, 2H, J = 8.1 Hz), 7.38–7.31 (m, 5H), 5.70 (s, 1H), 4.59 (d, 2H, J = 4.6 Hz). ¹³C NMR (125 MHz, CD₃CN, δ): 164.2, 140.4, 132.9, 128.3, 127.9, 127.6 (q, J = 32.4 Hz), 126.5 (q, J = 3.9 Hz), 126.3, 125.3 (q, J = 270.8 Hz), 64.0, 43.9. HRMS (ESI⁺) m/z calcd for C₁₆H₁₂F₃N₃O [M+H]^+ 320.1006; found, 320.0993.
3. Measurement of Reaction Rate Constants

Each diazo compound and BocGlyOH were dissolved separately in CD$_3$CN at a concentration of 50 mM. The solutions were combined in an NMR tube at an equimolar ratio, mixed, and then inserted immediately into an NMR spectrometer. A 16-scan 1H NMR spectrum was acquired every 10 min. Percent conversion was monitored by disappearance of starting material and appearance of product as determined by integration of multiple 1H NMR spectral peaks. No other products were apparent by 1H NMR spectroscopy. The value of the second-order rate constant was determined by linear regression analysis of a plot of $1/[$diazo$]$ versus time. All reactions were performed in triplicate.

![Figure S1](image)

Figure S1. 1H NMR kinetic data for reaction between compounds 1–6 and BocGlyOH.
4. Esterification Reactions

A. Esterification of BocGlyOH

Diazo compound 1 (0.005 g, 0.02 mmol) and BocGlyOH (0.003 g, 0.02 mmol) were added to a 1:1 solution of acetonitrile/100 mM MES–HCl buffer at pH 5.5, and the resulting solution was stirred for 6 h at ambient temperature. The reaction mixture was concentrated under reduced pressure, and the ratio of products was determined by integration of 1H NMR spectral peaks.

Data for S16: 1H NMR (400 MHz, CD$_3$CN, δ): 7.60 (s, 1H), 7.37–7.22 (m, 7H), 6.93 (d, 2H, $J = 8.4$ Hz), 5.91 (s, 1H), 5.74 (s, 1H), 4.43–4.31 (m, 2H), 3.94–3.82 (m, 2H), 3.79 (s, 3H), 1.38 (s, 9H). 13C NMR (100 MHz, CD$_3$CN, δ): 170.4, 169.3, 161.1, 157.4, 139.9, 129.9, 129.3, 128.6, 128.1, 127.9, 114.8, 80.3, 76.7, 55.9, 43.2, 43.2, 28.4. HRMS (ESI$^+$) m/z calcd for C$_{23}$H$_{28}$N$_2$O$_6$ [M+H]$^+$ 429.2021; found, 429.2021.

Data for S17: 1H NMR (500 MHz, CD$_3$CN, δ): 7.47 (s, 1H), 7.33–7.25 (m, 4H), 7.23–7.21 (m, 3H), 6.90 (d, 2H, $J = 8.8$ Hz), 4.97 (d, 1H, $J = 4.5$ Hz), 4.40–4.32 (m, 2H), 4.16 (d, 2H, $J = 4.5$ Hz), 3.78 (s, 3H). 13C NMR (125 MHz, CD$_3$CN, δ): 173.3, 160.4, 140.3, 133.8, 129.3, 129.0, 128.1, 127.8, 114.5, 74.3, 55.8, 43.1. HRMS (ESI$^+$) m/z calcd for C$_{16}$H$_{17}$NO$_3$ [M+H]$^+$ 272.1282; found, 272.1278.
Diazo compound 2 (0.005 g, 0.02 mmol) and BocGlyOH (0.003 g, 0.02 mmol) were added to 1:1 acetonitrile/100 mM MES–HCl buffer at pH 5.5, and the resulting solution was stirred for 6 h at ambient temperature. The solution was then concentrated under reduced pressure, and the ratio of products was determined by integration of 1H NMR spectral peaks.

Data for S18: 1H NMR (500 MHz, CD$_3$CN, δ): 7.65 (s, 1H), 7.33–7.28 (m, 4H), 7.25–7.20 (m, 5H), 5.92 (s, 1H), 5.77 (s, 1H), 4.42–4.31 (m, 2H), 3.92–3.82 (m, 2H), 2.34 (s, 3H), 1.38 (s, 9H). 13C NMR (125 MHz, CD$_3$CN, δ): 170.4, 169.2, 157.4, 140.0, 139.8, 133.7, 130.1, 129.3, 128.3, 128.1, 127.9, 80.3, 76.8, 43.2, 43.2, 28.4, 21.2. HRMS (ESI$^+$) m/z calcd for C$_{23}$H$_{28}$N$_2$O$_5$ [M+NH$_4$]$^+$ 430.2337; found, 430.2336.

Data for S19: 1H NMR (500 MHz, CD$_3$CN, δ): 7.46 (s, 1H), 7.31–7.28 (m, 4H), 7.25–7.21 (m, 3H), 7.17 (d, 2H, $J = 7.9$ Hz), 4.99 (d, 1H, $J = 4.2$ Hz), 4.40–4.32 (m, 2H), 4.18 (d, 1H, $J = 4.5$ Hz), 2.32 (s, 1H). 13C NMR (125 MHz, CD$_3$CN, δ): 173.3, 140.3, 138.74, 138.71, 129.8, 129.3, 128.1, 127.9, 127.6, 74.6, 43.1, 21.1. HRMS (ESI$^+$) m/z calcd for C$_{16}$H$_{17}$NO$_2$ [M+H]$^+$ 256.1333; found, 256.1330.

Diazo compound 3 (0.005 g, 0.02 mmol) and BocGlyOH (0.004 g, 0.02 mmol) were added to 1:1 acetonitrile/100 mM MES–HCl buffer at pH 5.5, and the resulting solution was stirred for 6 h at ambient temperature. The reaction mixture was then concentrated under reduced pressure, and the ratio of products was determined by integration of 1H NMR spectral peaks.

Data for S20: 1H NMR (750 MHz, CD$_3$CN, δ): 7.65 (s, 1H), 7.46 (m, 2H), 7.40 (m, 3H), 7.30 (t, 2H, $J = 7.4$ Hz), 7.23 (m, 3H), 5.99 (s, 1H), 5.78 (s, 1H), 4.41 (dd, 1H, $J = 6.3$, 15.2 Hz), 4.35 (dd, 1H, $J = 6.1$, 15.2 Hz), 3.92 (dd, 1H, $J = 6.2$, 17.9 Hz), 3.88 (dd, 1H, $J = 5.7$, 18.0 Hz), 1.40 (s, 9H). 13C NMR (125 MHz, CDCl$_3$, δ): 168.7, 168.0, 156.4, 137.9, 135.0, 129.1, 128.8, 128.6, 127.8, 127.5, 127.4, 80.6, 76.2, 43.4, 43.0, 28.2. HRMS (ESI$^+$) m/z calcd for C$_{22}$H$_{26}$N$_2$O$_5$ [M+H]$^+$ 399.1915; found, 399.1917.

Data for S21: 1H NMR (750 MHz, CD$_3$CN, δ): 7.48 (s, 1H), 7.43 (d, 2H, $J = 7.4$ Hz), 7.36 (t, 2H, $J = 7.4$ Hz), 7.31 (m, 3H), 7.24 (m, 3H), 5.04 (d, 1H, $J = 2.8$ Hz), 4.37 (m, 2H), 4.28 (d, 1H, $J = 3.8$ Hz). 13C NMR (125 MHz, CD$_3$CN, δ): 173.1, 141.6, 140.3, 129.3, 129.2, 128.8, 128.1, 127.9, 127.6, 74.7, 43.1. HRMS (ESI$^+$) m/z calcd for C$_{15}$H$_{15}$NO$_2$ [M+H]$^+$ 242.1176; found, 242.1169.
Diazo 4 (0.005 g, 0.02 mmol) and BocGlyOH (0.003 g, 0.02 mmol) were added to 1:1 acetonitrile/100 mM MES–HCl buffer at pH 5.5, and the resulting solution was stirred for 6 h at ambient temperature. The reaction mixture was then concentrated under reduced pressure, and the ratio of products was determined by integration of 1H NMR spectral peaks.

Data for S22: 1H NMR (500 MHz, CD$_3$CN, δ): 7.66 (s, 1H), 7.48 (dd, 2H, $J = 5.4, 8.6$ Hz), 7.30 (t, 2H, $J = 7.3$ Hz), 7.25–7.20 (m, 3H), 7.14 (t, 2H, $J = 8.9$ Hz), 5.97 (s, 1H), 5.77 (s, 1H), 4.40 (dd, 1H, $J = 6.3, 15.2$ Hz), 4.34 (dd, 1H, $J = 6.1, 15.2$ Hz), 3.94–3.84 (m, 2H), 1.38 (s, 9H). 13C NMR (125 MHz, CDCl$_3$, δ): 168.6, 167.9, 163.1 (d, $J = 248.2$ Hz), 156.4, 137.8, 131.0 (d, $J = 3.3$ Hz), 129.4 (d, $J = 8.5$ Hz), 127.8, 127.5, 115.8 (d, $J = 21.8$ Hz), 80.7, 75.5, 43.4, 43.0, 28.2. HRMS (ESI$^+$) m/z calcd for C$_{22}$H$_{25}$FN$_2$O$_5$ [M+H]$^+$ 417.1821; found, 417.1816.

Data for S23: 1H NMR (400 MHz, CD$_3$CN, δ): 7.53 (s, 1H), 7.45–7.42 (m, 2H), 7.32–7.28 (m, 2H), 7.24–7.20 (m, 3H), 7.09 (t, 2H, $J = 8.9$ Hz), 5.04 (s, 1H), 4.41–4.31 (m, 2H). 13C NMR (125 MHz, CD$_3$CN, δ): 174.7, 165.0 (d, $J = 243.7$ Hz), 142.0, 139.6, 131.3 (d, $J = 8.3$ Hz), 131.1, 129.8, 129.6, 117.6 (d, $J = 21.7$ Hz), 75.7, 44.8. HRMS (ESI$^+$) m/z calcd for C$_{15}$H$_{14}$FNO$_2$ [M+H]$^+$ 260.1082; found, 260.1080.

Diazo 5 (0.005 g, 0.02 mmol) and BocGlyOH (0.003 g, 0.02 mmol) were added to 1:1 acetonitrile/100 mM MES–HCl buffer at pH 5.5, and the resulting solution was stirred for 6 h at

–S14–
ambient temperature. The reaction mixture was then concentrated under reduced pressure, and
the ratio of products was determined by integration of 1H NMR spectral peaks.

Data for S24: 1H NMR (500 MHz, CD$_3$CN, δ): 7.61 (s, 1H), 7.45–7.40 (m, 4H), 7.31–7.29 (m, 2H), 7.25–7.21 (m, 3H), 5.98 (s, 1H), 5.74 (s, 1H), 4.42–4.32 (m, 2H), 3.90 (m, 2H), 1.39 (s, 9H). 13C NMR (125 MHz, CDCl$_3$, δ): 168.5, 167.6, 156.4, 137.7, 135.1, 135.6, 128.9, 128.6, 127.8, 127.5, 80.8, 75.4, 43.4, 43.0, 28.2. HRMS (ESI$^+$) m/z calcd for C$_{22}$H$_{25}$ClN$_2$O$_5$ [M+NH$_4$]$^+$ 450.1791; found, 450.1785.

Data for S25: 1H NMR (500 MHz, CD$_3$CN, δ): 7.47 (s, 1H), 7.42 (d, 2H, $J = 8.5$ Hz), 7.37 (d, 2H, 8.6 Hz), 7.32–7.29 (m, 2H), 7.25–7.21 (m, 3H), 5.04 (d, 1H, $J = 1.8$ Hz), 4.36 (m, 2H), 4.31 (d, 1H, J = 3.4 Hz). 13C NMR (125 MHz, CD$_3$CN, δ): 172.7, 140.5, 140.2, 134.0, 129.3, 129.21, 129.18, 128.1, 127.9, 73.9, 43.1. HRMS (ESI$^+$) m/z calcd for C$_{15}$H$_{14}$ClNO$_2$ [M+H]$^+$ 276.0786; found, 276.0789.

Diazo 6 (0.005 g, 0.02 mmol) and BocGlyOH (0.003 g, 0.02 mmol) were added to 1:1 acetonitrile/100 mM MES–HCl buffer at pH 5.5, and the resulting solution was stirred for 6 h at ambient temperature. The reaction mixture was then concentrated under reduced pressure, and the ratio of products was determined by integration of 1H NMR spectral peaks.

Data for S26: 1H NMR (500 MHz, CD$_3$CN, δ): 7.73–7.71 (m, 3H), 7.65 (d, 2H, $J = 8.3$ Hz), 7.31–7.28 (m, 2H), 7.25–7.20 (m, 3H), 6.06 (s, 1H), 5.77 (s, 1H), 4.42–4.32 (m, 2H), 3.97–3.87 (m, 2H), 1.38 (s, 1H). 13C NMR (125 MHz, CD$_3$CN, δ): 170.3, 168.4, 157.4, 141.1, 139.7, 131.1 (q, $J = 32.4$ Hz), 129.4, 128.8, 128.1, 128.0, 126.3 (q, $J = 3.9$ Hz), 125.1 (q, $J = 271.3$ Hz), 80.4, 76.1, 43.4, 43.2, 28.4. HRMS (ESI$^+$) m/z calcd for C$_{23}$H$_{25}$F$_3$N$_2$O$_5$ [M+NH$_4$]$^+$ 484.2037; found, 484.2054.

Data for S27: 1H NMR (400 MHz, CD$_3$CN, δ): 7.69–7.62 (m, 4H), 7.56 (s, 1H), 7.31–7.20 (m, 5H), 5.54 (s, 1H), 5.14 (d, 1H, $J = 4.6$ Hz), 4.45 (d, 1H, $J = 4.8$ Hz), 4.37–4.35 (m, 2H). 13C NMR (125 MHz, CD$_3$CN, δ): 172.3, 146.0, 140.1, 130.1 (q, $J = 32.3$ Hz), 129.3, 128.1, 128.9, 126.2 (q, $J = 41.3$ Hz), 125.3 (q, $J = 271.3$ Hz), 74.0, 43.1. HRMS calcd for (C$_{16}$H$_{14}$F$_3$NO$_2$) [M+H]$^+$ 310.1050; found, 310.1043.
B. Esterification of Other Small Molecules

Diazo compound 2 (0.005 g, 0.02 mmol) and BocSerOH (0.004 g, 0.02 mmol) were added to 1:1 acetonitrile/100 mM MES–HCl buffer at pH 5.5, and the resulting solution was stirred for 6 h at ambient temperature. The solution was then concentrated under reduced pressure, and the ratio of products was determined by integration of 1H NMR spectral peaks. Data for S19 are reported above; data for S28 are reported below (both diastereomers). No other products were observed by TLC or 1H NMR spectroscopy.

Data for S28: 1H NMR (500 MHz, CD$_3$CN, Diastereomer A, δ): 7.72 (s, 1H), 7.35 (d, 2H, $J = 8.0$ Hz), 7.30 (t, 2H, $J = 7.3$ Hz), 7.24 (t, 3H, $J = 7.7$ Hz), 7.18 (d, 2H, $J = 7.2$ Hz), 5.96 (s, 1H), 5.79 (d, 1H, $J = 6.8$ Hz), 4.38–4.33 (m, 2H), 4.32–4.29 (m, 1H), 4.08–4.03 (m, 1H), 3.77–3.69 (m, 2H), 2.34 (s, 3H), 1.40 (s, 9H). 1H NMR (500 MHz, CD$_3$CN, Diastereomer B, δ): 7.64 (s, 1H), 7.36–7.28 (m, 4H), 7.25–7.17 (m, 5H), 5.95 (s, 1H), 5.84 (d, 1H, $J = 7.8$ Hz), 4.41–4.30 (m, 2H), 4.28–4.25 (m, 1H), 3.86–3.82 (m, 1H), 3.79–3.72 (m, 1H), 3.41 (t, 3H, $J = 5.7$ Hz), 2.34 (s, 3H), 1.36 (s, 9H). 13C NMR (125 MHz, CD$_3$CN, Diasteromer A, δ): 171.3, 169.7, 157.0, 140.2, 139.6, 133.2, 130.2, 129.3, 128.5, 128.1, 128.0, 80.3, 77.0, 63.3, 57.1, 43.4, 28.4, 21.2. 13C NMR (125 MHz, CD$_3$CN, Diastereomer B, δ): 171.2, 169.3, 156.7, 139.9, 139.8, 133.6, 130.1, 129.3, 128.4, 128.1, 127.9, 80.3, 77.0, 62.8, 57.1, 43.3, 28.4, 21.1. HRMS (ESI$^+$) m/z calcd for C$_{24}$H$_{30}$N$_2$O$_6$ [M+H]$^+$ 443.2177; found, 443.2185 (Diastereomer A), 443.2183 (Diastereomer B).
Diaz compound 2 (0.005 g, 0.02 mmol) and p-hydroxybenzoic acid (0.003 g, 0.02 mmol) were added to 1:1 acetonitrile/100 mM MES–HCl buffer at pH 5.5, and the resulting solution was stirred for 6 h at ambient temperature. The solution was then concentrated under reduced pressure, and the ratio of products was determined by integration of 1H NMR spectral peaks. Data for S19 are reported above; data for S29 are reported below. No other products were observed by TLC or 1H NMR spectroscopy.

Data for S29:

1H NMR (500 MHz, CD$_3$CN, δ): 7.98 (d, 2H, $J= 8.8$ Hz), 7.76 (s, 1H), 7.44 (d, 2H, $J= 8.1$ Hz), 7.39 (s, 1H), 7.29–7.18 (m, 7H), 6.89 (d, 2H, $J= 8.8$ Hz), 6.06 (s, 1H), 4.36 (d, 2H, $J= 6.2$ Hz), 2.35 (s, 3H). 13C NMR (125 MHz, CD$_3$CN, δ): 169.7, 165.8, 162.6, 140.0, 139.8, 134.2, 133.0, 130.1, 129.3, 128.3, 128.0, 127.9, 121.9, 116.1, 76.8, 43.1, 21.2. HRMS (ESI$^+$) m/z calcd for C$_{23}$H$_{21}$NO$_4$ [M+H]$^+$ 376.1544; found, 376.1539.

Diaz compound 2 (0.005 g, 0.02 mmol) and 3-mercaptopropanoic acid (0.002 g, 0.02 mmol) were added to 1:1 acetonitrile/100 mM MES–HCl buffer at pH 5.5, and the resulting solution was stirred for 6 h at ambient temperature. The solution was then concentrated under reduced pressure, and the ratio of products was determined by integration of 1H NMR spectral peaks. Data for S19 are reported above; data for S30 are reported below. No other products were observed by TLC or 1H NMR spectroscopy.

Data for S30:

1H NMR (500 MHz, CD$_3$CN, δ): 7.38 (s, 1H), 7.34 (d, 2H, $J= 8.1$ Hz), 7.29 (t, 2H, $J= 7.3$ Hz), 7.25–7.19 (m, 5H), 5.91 (s, 1H), 4.35 (d, 2H, $J= 6.2$ Hz), 2.80–2.70 (m, 4H), 2.34 (s, 3H), 1.89 (t, 1H, $J= 8.2$ Hz). 13C NMR (125 MHz, CD$_3$CN, δ): 171.5, 169.4, 139.9, 139.8, 133.9, 130.1, 129.3, 128.3, 128.1, 127.9, 76.6, 43.1, 39.1, 21.1, 20.2. HRMS (ESI$^+$) m/z calcd for (C$_{19}$H$_{21}$NO$_3$S) [M+H]$^+$ 344.1315; found, 344.1315.

Diaz compound 2 (0.005 g, 0.02 mmol) and AlaOH (0.002 g, 0.02 mmol) were added to 1:1 acetonitrile/100 mM MES–HCl buffer at pH 5.5, and the resulting solution was stirred for 6 h at ambient temperature. The solution was then concentrated under reduced pressure, and the crude reaction mixture was analyzed by 1H NMR spectroscopy (Figure S2) and LC–MS (Figure S3), which revealed no reaction.
Figure S2. 1H NMR (400 MHz, CD$_3$CN) overlay of diazo compound 2 (bottom, blue) and a crude reaction mixture of diazo compound 2 treated with AlaOH in 1:1 acetonitrile/100 mM MES–HCl buffer at pH 5.5 (top, red).

Figure S3. LC–MS chromatograms of diazo compound 2 (left, blue) and a crude reaction mixture of diazo compound 2 treated with AlaOH in 1:1 acetonitrile/100 mM MES–HCl buffer at pH 5.5 (right, red). The trace impurities with retention times of 11 and 13 min are present in both chromatograms and are likely decomposition products of diazo compound 2 in the acidic conditions used for chromatography.
5. Protein Labeling

9-Diazofluorene was prepared as described previously.2 Yields and spectra matched the published data. Ribonuclease A (0.010 g, 0.73 µmol) was dissolved in 1 mL of 10 mM MES–HCl buffer at pH 5.5. 9-Diazofluorene (0.007 g, 0.036 mmol) was dissolved in 5 mL of CH₃CN. A 100-µL aliquot of the diazo stock solution was added to a 100-µL aliquot of the RNase A stock solution. The resulting mixture was mixed by nutation for 4 h at 37 °C. Any remaining diazo compound was then quenched by addition of 10 µL of 17.4 M acetic acid. Acetonitrile was removed by concentration under reduced pressure, and the aqueous solution of labeled protein was analyzed by MALDI–TOF mass spectrometry (Figures S2 and 5).

Ribonuclease A (0.010 g, 0.73 µmol) was dissolved in 1 mL of 10 mM MES–HCl buffer at pH 5.5. Diazoo compound 2 (0.095 g, 0.036 mmol) was dissolved in 5 mL of CH₃CN. A 100-µL aliquot of the diazo stock solution was added to a 100-µL aliquot of the RNase A stock solution. The resulting mixture was mixed by nutation for 4 h at 37 °C. Any remaining diazo compound was then quenched by addition of 10 µL of 17.4 M acetic acid. Acetonitrile was removed by concentration under reduced pressure, and the aqueous solution of labeled protein was analyzed by MALDI–TOF mass spectrometry (Figures S2 and 5).
Figure S4. Raw MALDI–TOF mass spectrometry data for esterification of RNase A with (A) 9-diazofluorene or (B) diazo compound 2. A truncated version of these data is depicted in Figure 5.
6. Ultraviolet Spectra of Diazo Compound 2

![Ultraviolet spectra and concentration dependence](image.png)

Figure S5. (A) Ultraviolet spectra of diazo compound 2 (0.8–50 mM). (B) Plot of the concentration dependence of the absorbance of diazo compound 2 (0.8–50 mM) at $\lambda_{\text{max}} = 435$ nm, giving $\varepsilon = 30.5 \text{ M}^{-1}\text{cm}^{-1}$.

7. References

8. NMR Spectra

1H NMR of S1 in CDCl$_3$ (500 MHz):

![1H NMR spectrum of S1 in CDCl$_3$ (500 MHz)]

13C NMR of S1 in CDCl$_3$ (125 MHz):

![13C NMR spectrum of S1 in CDCl$_3$ (125 MHz)]
^{1}H NMR of S2 in CDCl$_3$ (500 MHz):

^{13}C NMR of S2 in CDCl$_3$ (125 MHz):
1H NMR of S3 in CD$_3$CN (500 MHz):

13C NMR of S3 in CD$_3$CN (125 MHz):
1H NMR of 1 in CD$_3$CN (500 MHz):

13C NMR of 1 in CDCl$_3$ (125 MHz):
1H NMR of S4 in CDCl$_3$ (600 MHz):

![NMR spectrum of S4 in CDCl$_3$ (600 MHz)]

13C NMR of S4 in CDCl$_3$ (150 MHz):

![NMR spectrum of S4 in CDCl$_3$ (150 MHz)]
1H NMR of S5 in CD$_3$CN (500 MHz):

$$\text{S5}$$

13C NMR of S5 in CD$_3$CN (125 MHz):
1H NMR of 2 in CD$_3$CN (600 MHz):

13C NMR of 2 in CD$_3$CN (150 MHz):
1H NMR of S6 in CDCl$_3$ (400 MHz):

13C NMR of S6 in CDCl$_3$ (100 MHz):
1H NMR of S7 in CDCl$_3$ (400 MHz):

![NMR spectrum of S7 in CDCl$_3$]

13C NMR of S7 in CDCl$_3$ (100 MHz):

![NMR spectrum of S7 in CDCl$_3$ (100 MHz)]
1H NMR of S8 in CDCl$_3$ (400 MHz):

13C NMR of S8 in CDCl$_3$ (125 MHz):
1H NMR of S9 in CD$_3$CN (500 MHz):

![1H NMR spectrum of S9 in CD$_3$CN](image)

13C NMR of S9 in CDCl$_3$ (125 MHz):

![13C NMR spectrum of S9 in CDCl$_3$](image)
1H NMR of S10 in CD$_3$CN (600 MHz):

13C NMR of S10 in CDCl$_3$ (100 MHz):
1H NMR of S11 in CD$_3$CN (500 MHz):

13C NMR of S11 in CD$_3$CN (125 MHz):
1H NMR of 3 in CD$_3$CN (600 MHz):

13C NMR of 3 in CD$_3$CN (125 MHz):
1H NMR of 4 in CD$_3$CN (500 MHz):

13C NMR of 4 in CD$_3$CN (125 MHz):
1H NMR of 5 in CD$_3$CN (500 MHz):

13C NMR of 5 in CDCl$_3$ (125 MHz):
1H NMR of S12 in CDCl$_3$ (400 MHz):

13C NMR of S12 in CDCl$_3$ (125 MHz):
1H NMR of S13 in CDCl$_3$ (500 MHz):

![NMR spectrum of S13 in CDCl$_3$ (500 MHz)](image)

13C NMR of S13 in CDCl$_3$ (125 MHz):

![NMR spectrum of S13 in CDCl$_3$ (125 MHz)](image)
1H NMR of S14 in CD$_3$CN (500 MHz):

\[
\begin{array}{c}
\text{F}_3\text{C} \\
\text{Br} \\
\text{N} \\
\text{S14} \\
\text{O} \\
\end{array}
\]

13C NMR of S14 in CDCl$_3$ (125 MHz):
1H NMR of S15 in CD$_3$CN (500 MHz):

![NMR Spectrogram](image)

13C NMR of S15 in CD$_3$CN (125 MHz):

![NMR Spectrogram](image)
1H NMR of 6 in CDCl$_3$ (400 MHz):

13C NMR of 6 in CD$_3$CN (125 MHz):
1H NMR of S16 in CD$_3$CN (400 MHz):

13C NMR of S16 in CD$_3$CN (100 MHz):
1H NMR of S17 in CD3CN (500 MHz):

\[
\begin{array}{c}
\text{S17} \\
\end{array}
\]

13C NMR of S17 in CD3CN (125 MHz):

\[
\begin{array}{c}
\text{OH} \\
\text{N} \\
\text{O} \\
\text{O}
\end{array}
\]
1H NMR of S18 in CD$_3$CN (500 MHz):

![1H NMR spectrum of S18](image)

13C NMR of S18 in CD$_3$CN (125 MHz):

![13C NMR spectrum of S18](image)
1H NMR of S19 in CD$_3$CN (500 MHz):

13C NMR of S19 in CD$_3$CN (125 MHz):
1H NMR of S20 in CD$_3$CN (750 MHz):

13C NMR of S20 in CDCl$_3$ (125 MHz):
1H NMR of S21 in CD$_3$CN (750 MHz):

13C NMR of S21 in CD$_3$CN (125 MHz):
1H NMR of S22 in CD$_3$CN (500 MHz):

13C NMR of S22 in CDCl$_3$ (125 MHz):
1H NMR of S23 in CD$_3$CN (600 MHz):

13C NMR of S23 in CD$_3$CN (125 MHz):
1H NMR of S24 in CD$_3$CN (500 MHz):

13C NMR of S24/CH$_2$Cl$_2$ in CDCl$_3$ (125 MHZ):
1H NMR of S25 in CD$_3$CN (500 MHz):

![NMR Spectrogram](Image)

13C NMR of S25 in CDCl$_3$ (125 MHz):

![NMR Spectrogram](Image)
1H NMR of S26 in CD$_3$CN (500 MHz):

13C NMR of S26 in CD$_3$CN (125 MHz):

1H NMR of S27 in CD$_3$CN (500 MHz):

13C NMR of S27 in CD$_3$CN (125 MHz):
1H NMR of S28 in CD$_3$CN (500 MHz):

13C NMR of S28 in CD$_3$CN (125 MHz):
1H NMR of S29 (Diastereomer A) in CD$_3$CN (500 MHz):

![1H NMR spectrum of S29 (Diastereomer A)]

1H NMR of S29 (Diastereomer B) in CD$_3$CN (500 MHz):

![1H NMR spectrum of S29 (Diastereomer B)]
13C NMR of S29 (Diastereomer A) in CD$_3$CN (100 MHz):

13C NMR of S29 (Diastereomer B) in CD$_3$CN (100 MHz):
1H NMR of S30 in CD$_3$CN (500 MHz):

![NMR spectrum of S30 in CD$_3$CN (500 MHz)](image1)

13C NMR of S30 in CD$_3$CN (125 MHz):

![NMR spectrum of S30 in CD$_3$CN (125 MHz)](image2)