The amino acid motifs available to enzymic catalysts are diverse. Still, many enzymes fall into classes wherein great similarities exist. One well-studied class is that of the serine enzymes containing the His•••Asp dyad. These enzymes were determined for the cleavage of uridylyl(3′,5′)-cyclic phosphate. Replacing Asp121 decreases the values of k_{cat}/K_m and k_{cat} for cleavage by 10-fold (D121N) and 102-fold (D121A). Replacing Asp121 also decreases the values of k_{cat}/K_m and k_{cat} for hydrolysis by 1005-fold (D121N) and 10-fold (D121A) but has no other effect on rate profiles for hydrolysis. There is no evidence for the formation of a low-barrier hydrogen bond between His119 and either an aspartate or an asparagine residue at position 121. Apparently, the major role of Asp121 is to orient the proper tautomer of His119 for catalysis. Thus, the mere presence of a His•••Asp dyad in an enzymic active site is not a mandate for its being crucial in effecting catalysis.

"ASD Catalytic Dyad of Ribonuclease A: Structure and Function of the Wild-Type, D121N, and D121A Enzymes"
L. Wayne Schultz, David J. Quirk,† and Ronald T. Raines*
Departments of Biochemistry and Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706
Received November 10, 1997; Revised Manuscript Received April 17, 1998

ABSTRACT: The side chains of histidine and aspartate residues form a hydrogen bond in the active sites of many enzymes. In serine proteases, the His•••Asp hydrogen bond of the catalytic triad is known to contribute greatly to catalysis, perhaps via the formation of a low-barrier hydrogen bond. In bovine pancreatic ribonuclease A (RNase A), the His•••Asp dyad is composed of His119 and Asp121. Previously, site-directed mutagenesis was used to show that His119 has a fundamental role, to act as an acid during catalysis of RNA cleavage [Thompson, J. E., and Raines, R. T. (1994) J. Am. Chem. Soc. 116, 5467–5468]. Here, Asp121 was replaced with an asparagine or alanine residue. The crystalline structures of the two variants were determined by X-ray diffraction analysis to a resolution of 1.6 Å with an R-factor of 0.18. Replacing Asp121 with an asparagine or alanine residue does not perturb the overall conformation of the enzyme. In the structure of D121N RNase A, N_O rather than O_S of Asn121 faces His119. This alignment in the crystalline state is unlikely to exist in solution because catalysis by the D121N variant is not compromised severely. The steady-state kinetic parameters for catalysis of RNA cleavage [Thompson, J. E., and Raines, R. T. (1994) J. Am. Chem. Soc. 116, 5467–5468]. Here, Asp121 was replaced with an asparagine or alanine residue. The crystalline structures of the two variants were determined by X-ray diffraction analysis to a resolution of 1.6 Å with an R-factor of 0.18. Replacing Asp121 with an asparagine or alanine residue does not perturb the overall conformation of the enzyme. In the structure of D121N RNase A, N_O rather than O_S of Asn121 faces His119. This alignment in the crystalline state is unlikely to exist in solution because catalysis by the D121N variant is not compromised severely. The steady-state kinetic parameters for catalysis of RNA cleavage [Thompson, J. E., and Raines, R. T. (1994) J. Am. Chem. Soc. 116, 5467–5468].
with asparagine in trypsin (23, 24) or alanine in subtilisin (25) leads to a 10^5-fold reduction in catalytic activity. This decrease suggests that the aspartate residue plays a critical role in catalysis. X-ray diffraction analysis of the trypsin variant revealed, however, that the catalytic histidine residue was being stabilized as an unproductive tautomer by its interaction with asparagine (26). This result suggests that one role of the aspartate residue in a Ser•••His•••Asp triad is to orient the proper tautomer of histidine.

Two attempts have thus far been made to determine the role of Asp121, the in the catalytic dyad of bovine pancreatic ribonuclease A [RNase A, 1 EC 3.1.27.5 (27)]. In one study, Asp121 was replaced with asparagine in a semisynthetic enzyme (28). This semisynthetic RNase A, RNase(1-118)(111-124), consists of a noncovalent complex between residues 1-118 of RNase A (obtained from proteolytic digestion of RNase A) and an overlapping synthetic peptide composed of the 14 C-terminal residues of RNase A, except with Asp121 replaced by an asparagine residue. The semisynthetic D121N analogue has 5% of the catalytic activity of the analogous wild-type semisynthetic enzyme. A difficulty with interpreting the results of this study, however, is that the three-dimensional structure of the semisynthetic D121N analogue exhibits numerous changes compared to that of the analogous wild-type semisynthetic enzyme (29, 30). In another study, site-directed mutagenesis was used to replace Asp121 in RNase A itself with a glutamate residue (31). The D121E enzyme has 17% of the activity of the wild-type enzyme for the hydrolysis of 0.1 mM C>phosphate and 16% for the hydrolysis of 0.4 mM C>phosphate. No other characterization of this variant has been reported. In related work, replacing Asp116 of the His•••Asp dyad of angiogenin, a homologue of RNase A, with an asparagine or alanine residue was shown to increase ribonucleolytic activity by 8- and 15-fold, respectively (32).

Here, we address the role of the aspartate residue in the catalytic dyad of RNase A. RNase A catalyzes the two-step hydrolysis of the P—O^5 bond of RNA on the 3' side of pyrimidine residues. Figure 1 depicts the classical mechanism for these reactions (33). In the transphosphorylation step, His119 of the His•••Asp dyad acts as an acid. The slow hydrolysis of the 2',3'-cyclic phosphate occurs separately and resembles the reverse of transphosphorylation (34, 35). It is in this second step that the action of the catalytic dyad of RNase A most resembles that of the catalytic triad. The amino acid sequences of pancreatic ribonucleases from more than 40 vertebrates are known (16, 17) and are evolving rapidly (36). The catalytic dyad is conserved in each of these ribonucleases, suggesting that these residues are important.

We have created RNase A variants in which Asp121 is replaced with an asparagine or alanine residue. Here, we report on the three-dimensional structures of the variants, as well as on their abilities to catalyze transphosphorylation and hydrolysis.

EXPERIMENTAL PROCEDURES

Materials. *Escherichia coli* strain BL21(DE3) (F−ompT rpsL::Tn10) (37) was from Novagen (Madison, WI). Buffers (except Tris), cUMP, and IPTG were from Sigma Chemical (St. Louis, MO). Tris was from Fisher Scientific (Pittsburgh, PA). Poly(C) was from Midland Reagent (Midland, TX).
UpA was synthesized by J. E. Thompson using methods published previously (38, 39). Growth media were from Diño (Detroit, MI) or, for 10 L growths, Marcop Development (Hackensack, NJ). DNA sequences were determined with the Sequenase Version 2.0 kit from U.S. Biochemicals (Cleveland, OH). DEAE Sephadex A-25 anion exchange resin, S-Sepharose cation exchange resin, and the mono-S FPLC cation exchange column were from Pharmacia LKB (Piscataway, NJ). Bacterial terrific broth [TB (40) contained (in 1 L) tryptone (12 g), yeast extract (24 g), glycerol (4 mL), KH2PO4 (2.3 g), and K2HPO4 (12.5 g).

Mutagenesis. Previously, we described the construction of a bovine pancreatic cDNA library, the cloning of the cDNA that encodes RNase A, and the efficient expression of this cDNA in E. coli (41). Here, the codon for Asp121 was changed to one for an asparagine or alanine residue by oligonucleotide-mediated site-directed mutagenesis (42) using the oligonucleotides 5'-ACTACTACCGCTAGGGTAAAACTGGACT-3' and 5'-ACTACTACCGCTAGGGC- AAAATGGACT-3', where the underlined bases differ from those in the wild-type cDNA. The GCT mismatch introduced a unique, translationally silent Nhel site that was used to screen for mutated plasmids. The complete sequence of the cDNA that encodes each enzyme was determined. Plasmids that direct the expression of wild-type, D121N, and D121A variants were lyophilized. Lyophilized D121N RNase A was dissolved in unbuffered water to a concentration of 60 mg/mL. Crystallization was performed in small siliconized tubes using the batch method. A solution (25 μL) of enzyme was mixed with an equal volume of an aqueous solution of 2-methyl-2,4-pentanediol (MPD) in 0.10 M MES-NaOH buffer (pH 5.2) to give a final enzyme concentration of 30 mg/mL in 47.5% (v/v) MPD and 0.05 M MES-NaOH buffer (pH 5.2). The pH of the buffer was determined prior to adding the MPD. Monoclinic crystals of D121N RNase A appeared after several months of incubation at 20 °C. These crystals belong to space group P21 with the following dimensions: a = 30.52 Å, b = 38.40 Å, c = 53.31 Å, and β = 105.7°.

Production of RNase A in E. coli. TB (0.20 L) containing ampicillin (200 μg/mL) was inoculated with a culture frozen in aqueous glycerol (30% v/v). After growth overnight at 37 °C, cells were collected by centrifugation and suspended in 0.20 L of fresh TB. This suspension was used to inoculate 10 L of TB containing ampicillin (200 μg/mL). When OD4 = 4 at 600 nm, IPTG was added to a final concentration of 0.5 mM. The culture was grown for an additional 3.5 h.

Cells were collected by centrifugation, resuspended in 0.10 L of 0.10 M NaOH buffer, and lysed by passage through a French pressure cell twice. The lysate was centrifuged at 30000g for 30 min. The resulting pellet was washed with a cold solution (0.30 L) of deoxycholate (1 mg/mL) and centrifuged again. The pellet was suspended in 0.50 L of Tris-acetic acid buffer (pH 8.0) containing urea (9 M), acetic acid (50 mM), sarcosine (40 mM), and EDTA (1 mM). Sonication was used to aid dissolution. To reduce any disulfide bonds, dithiothreitol was added to a final concentration of 20 mM. After 1 h, the solution was passed through DEAE A-25 resin (25 g) that had been equilibrated with the above resuspension solution, and acetic acid (1/10 volume) was added to the effluent. The resulting solution was dialyzed exhaustively against 20 mM acetic acid. The dialysate was centrifuged, the supernatant dialyzed to 1 L, and the pH raised to 8.1 by the addition of Tris base. Reduced glutathione and oxidized glutathione were then added to final concentrations of 2.3 and 0.8 mM, respectively. After 24 h, the resulting solution was loaded onto an S-Sepharose cation exchange column (0.20 L). The column was washed with 1 L of 50 mM HEPES-HCl buffer (pH 7.9), and the adsorbed proteins were eluted with a linear gradient (0.50 L + 0.50 L) of NaCl (0 to 0.50 M). Fractions were pooled on the basis of A280 nm, and the pooled fractions were diluted with buffer to a protein concentration of <10 mg/mL. The resulting solution was loaded onto an HR10/10 mono-S cation exchange FPLC column (15 cm × 1.8 cm2) that had been equilibrated with 50 mM HEPES-HCl buffer (pH 7.9). The column was washed with 50 mM HEPES-HCl buffer (pH 7.9), and the adsorbed proteins were eluted with a linear gradient (50 mL + 50 mL) of NaCl (0 to 0.50 M) in the same buffer. The proteins eluted between 0.09 and 0.12 M NaCl. Fractions were again pooled on the basis of A280 nm, which was monitored continuously. To discard deamination, the pH of the pooled fractions was lowered to 5.5 by the addition of 20 mM acetic acid. After exhaustive dialysis against water, the proteins were concentrated with an Amicon Centricon-10 filter, passed through a 0.45 μm filter (Schleicher & Schuell, Keene, NH), and stored at 4 °C.

The purity of the protein preparation was assessed by SDS–PAGE and native PAGE. On the basis of the symmetry of A280 peaks during cation exchange chromatography and the appearance of bands after electrophoresis through polyacrylamide gels, wild-type and the D121N variant were ≥99% pure and the D121A variant was ≥95% pure. The concentration of purified enzyme was determined by assuming that A277.5 = 0.72 at 277.5 nm for a 1.0 mg/mL solution (43). A 10 L growth typically yielded several hundred milligrams of purified enzyme.

Crystallization. Salt-free aqueous solutions of the D121N and D121A variants were lyophilized. Lyophilized D121N RNase A was dissolved in unbuffered water to a concentration of 60 mg/mL. Crystallization was performed in small siliconized tubes using the batch method. A solution (25 μL) of enzyme was mixed with an equal volume of an aqueous solution of 2-methyl-2,4-pentanediol (MPD) in 0.10 M MES-NaOH buffer (pH 5.2) to give a final enzyme concentration of 30 mg/mL in 47.5% (v/v) MPD and 0.05 M MES-NaOH buffer (pH 5.2). The pH of the buffer was determined prior to adding the MPD. Monoclinic crystals of D121N RNase A appeared after several months of incubation at 20 °C. These crystals belong to space group P2121 with the following dimensions: a = 30.52 Å, b = 38.40 Å, c = 53.31 Å, and β = 105.7°.

Lyophilized D121A RNase A was dissolved in unbuffered water to a concentration of 60 mg/mL. Crystallization was performed using the hanging drop method. Drops consisting of enzyme solution (1.5 μL), water (1.5 μL), and reservoir solution (30 μL) were suspended from siliconized coverslips over 0.50 mL of 2.5 M sodium acetate buffer (pH 5.3) containing saturating NaCl. Trigonal crystals of the D121A RNase A appeared within 1 day of incubation at 20 °C and grew to a size of 0.5 mm × 0.5 mm × 1.0 mm after several days. These crystals belong to space group P32121 with the following dimensions: a = b = 64.70 Å, c = 65.03 Å, and γ = 120°.

X-ray Diffraction Data Collection. All X-ray data were collected with a Siemens HI-STAR detector mounted on a Rigaku rotating anode operating at 50 kV and 90 mA and a 300 μm focal spot. The X-ray beam was collimated by double-focusing mirrors. The crystal to detector distance was 12.0 cm. Data were obtained in 512 × 512 pixel format, processed with the program XDS (44, 45), and scaled using the program XSCALIBRE (G. Wesenberg and I. Rayment, unpublished results). The data set for D121N RNase A was 88% complete in the resolution range of 30–1.6 Å with an overall merging R-factor of 1.9%. The data set for D121A RNase A was 91% complete in the resolution range of 30–1.6 Å with an overall merging R-factor of 2.9%.
Structure Refinement. The starting model for the structure of D121N RNase A consisted of residues 2–124 of the wild-type enzyme (PDB entry 7rsa), stripped of all solvent molecules and side chain atoms of residue 121. The model was subjected to 10 cycles of least-squares refinement with the program TNT (46), yielding an initial R-factor of 23.4%. A difference Fourier map \((F_o - F_c)\) clearly showed the position of the side chain atoms of Asn121. Manual adjustments to the model were performed by using the program FRRODO (47). After several cycles of manual adjustments and least-squares refinement, the resolution was extended to 1.6 Å and water molecules were added to the model. The peak searching algorithm in TNT was used to place ordered water molecules. Water molecules with at least 1\(\sigma \) of \(2F_o - F_c\) density and 3\(\sigma \) of \(F_o - F_c\) density and within hydrogen bonding distance of the protein or of other water molecules were retained.

The structure of the D121N variant of RNase A was solved in the monoclinic space group \(P_2_1\) and contains only water molecules in the active site. Here, the D121N structure will be compared to that of phosphate-free wild-type RNase A, which was also crystallized from organic solvent in the \(P_2_1\) space group [PDB entry 7rsa (48)]. The D121N structure will also be compared with the semisynthetic D121N RNase A analogue (sD121N), which contains a sulfate ion in the active site and was crystallized from high salt in the trigonal space group \(P3_21\). The D121N structure was solved to a resolution of 2.0 Å [PDB entry 1rph (30)]. In a least-squares superposition, the main chain atoms of D121A RNase A have an average rms deviation of 0.15 Å from those of the wild-type enzyme and 0.75 Å from the sD121A analogue.

The starting model for the structure of D121A RNase A consisted of residues 1–124 of wild-type RNase A (PDB entry 1rph), stripped of all solvent molecules and side chain atoms of residue 121. The model was subjected to 10 cycles of least-squares refinement with the program TNT (46), yielding an initial R-factor of 22.5%. A difference Fourier map \((F_o - F_c)\) clearly showed the position of the side chain carbon of Ala121. Manual adjustments to the model were performed by using the program FRRODO (47). After several cycles of manual adjustments and least-squares refinement, the resolution was extended to 1.6 Å and water molecules were added to the model. The peak searching algorithm in TNT was used to place ordered water molecules. Water molecules with at least 1\(\sigma \) of \(2F_o - F_c\) density and 3\(\sigma \) of \(F_o - F_c\) density and within hydrogen bonding distance of the protein or of other water molecules were retained.

The structure of the D121A variant of RNase A was solved in the trigonal space group \(P3_21\) and contains the first example of an acetate ion in an RNase A active site. Here, the D121A structure will be compared to that of wild-type RNase A that was also crystallized from high salt in the \(P3_21\) space group and contains a bound sulfate in the active site [PDB entry 1rph (49)]. The D121A structure will also be compared with that of the semisynthetic D121A RNase A analogue (sD121A), which contains a sulfate ion in the active site and was crystallized from high salt in the \(P3_21\) space group. The sD121A structure was solved to a resolution of 2.0 Å [PDB entry 4srn (30)]. In a least-squares superposition, the main chain atoms of D121A RNase A have an average rms deviation of 0.38 Å from those of the wild-type enzyme and 0.53 Å from the sD121A analogue.

Enzyme Kinetics. Steady-state kinetic parameters for the cleavage of UpA and poly(C) and the hydrolysis of cUMP were determined by spectrophotometric assays. The catalytic dyad of RNase A most resembles the well-characterized catalytic triad of serine proteases during the hydrolysis reaction (Figure 1). For this reason, the steady-state kinetic parameters for the hydrolysis reaction were evaluated as a function of pH.

Assays were performed at 25 °C in a 0.10 M solution of the appropriate buffer, adjusted in pH with aqueous NaOH or HCl. Enough NaCl was added to each reaction to increase the ionic strength \(I\) to 0.10 M, which was calculated on the basis of the concentrations of buffer components and substrate. The buffer used for assays of the transphosphorylation of UpA (0.10–1.0 mM) and poly(C) (0.050–1.0 mM) was MES (pH 6.0). The buffers used for assays of the hydrolysis of cUMP were formic acid (pH 3.45 and 4.00), acetic acid (pH 4.48 and 5.02), MES (pH 5.53 and 6.03), Bis-Tris (pH 6.00 and 7.02), BICINE (pH 6.48, 7.97, and 8.46), MOPS (pH 6.94 and 7.46), and AMPSO (pH 9.00).

Assays were performed in a 1.0 or 0.2 cm cuvette with a Cary model 3 spectrophotometer equipped with a Cary temperature controller. Substrate concentrations were determined by ultraviolet absorption using an \(\epsilon_{260}\) of 24 600 M⁻¹ cm⁻¹ at pH 7.0 for UpA (50) and an \(\epsilon_{268}\) of 6200 M⁻¹ cm⁻¹ at pH 7.8 for poly(C) (51) or by mass for cUMP. The concentrations of substrate in the assays ranged from \(K_m/5\) to 5\(K_m\). BSA (0.5 mg/mL) was added to the reaction mixtures containing poly(C). The cleavage of UpA was monitored at 286 nm using a \(\Delta\epsilon\) of −755 M⁻¹ cm⁻¹. The cleavage of poly(C) was monitored at 238 nm. The \(\Delta\epsilon\) at 250 nm, as calculated from the difference in molar absorbptivity of the polymeric substrate and the mononucleotide cyclic phosphate product, has been reported to be 2380 M⁻¹ cm⁻¹ at pH 6.2 (51). The \(\Delta\epsilon\) at 238 nm was determined to be 2792 M⁻¹ cm⁻¹ by observing the change in absorption of a partially cleaved substrate at 250 and 238 nm. The hydrolysis of cUMP was monitored at either 282 or 293 nm. The values for the extinction coefficients determined for the hydrolysis of cUMP are listed in Table 3.

Kinetic Data Analysis. Data processing and nonlinear regression analysis were performed with the program MATHCAD (MathSoft, Cambridge, MA). Initial velocity data were weighted in proportion to the magnitude of each data point. The pH–rate profiles were fitted by using the logarithm of the kinetic constants. Reported errors were generated by the asymptotic variance–covariance matrix method. Because of strong product inhibition and a relatively small change in the extinction coefficient, the initial velocities for the hydrolysis of cUMP were difficult to measure reliably. For this reason, the steady-state kinetic parameters for this substrate were determined by using the integrated rate equation (52, 53) to fit the complete time course of each hydrolysis reaction. The use of the integrated rate equation provided more accurate values for the steady-state kinetic parameters as well as values for \(K_p\) the dissociation constant for the RNase A·3'·UMP complex. Each progress curve for the hydrolysis reaction was fitted to the integrated rate equation with the inclusion of product inhibition by an iterative procedure in which the kinetic parameters were varied by hand and the fit was judged by eye. The value of \(k_{cat}\) was allowed to vary slightly from progress curve to
using the Michaelis–Menten equation. If the parameters so obtained were used to change Asp121 of the His3...Asp catalytic dyad of RNase A to an asparagine or alanine residue. The enzyme values of K_{cat} and K_m were obtained from the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles of the D121N enzyme reach a plateau, but those of the variants decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.

As shown in Figure 6, the K_p profile of D121N RNase A is similar to that of the wild-type enzyme except for a decrease. The K_{cat}/K_m profiles for wild-type RNase A and D121N RNase A have a slope of 1 at pH 5.5; all three enzymes have a slope of <1 between pH 4.5 and 7.0.
decreased K_p at high pH. The K_p of D121A RNase A is 2-fold smaller than that of the other two enzymes.

DISCUSSION

Three-Dimensional Structures. RNase A was the third enzyme (after lysozyme and carboxypeptidase) whose structure was solved by X-ray diffraction analysis (56). Despite this early precedent (57), the crystalline structures reported here are the first for active-site variants. These structures show that replacing residue Asp121 of the His-Asp catalytic dyad with an asparagine or alanine residue does not affect the structure of RNase A beyond residue 121. Interpretations of function based on the identity of the active-site residues alone are thus justified.

The structure of RNase A is comprised of a twisted four-stranded, antiparallel β-sheet consisting of two long central β-strands, $\beta2$ and $\beta3$ (residues 71–92 and 94–110, respectively), flanked by two shorter β-strands, $\beta1$ and $\beta4$ (residues 41–48 and 118–123, respectively). Three helicies are found in RNase A: $\alpha1$ at the N terminus (residues 3–13) and $\alpha2$ and $\alpha3$ nearly perpendicular to and at either end of the β-sheet (residues 24–34 and 50–60, respectively). Nucleotide binding occurs in a deep cleft created by $\alpha1$ and $\beta3$ (58). The bases of adjacent RNA nucleotides bind in three enzymic subsites referred to as B1–3 (59). Catalysis occurs in the P1 subsite and results in the cleavage of the P-O$^\delta$ bond specifically on the 3'-side of a pyrimidine nucleotide bound in the B1 subsite. Residues from the B1 subsite and P1 catalytic site compose the walls and floor of the groove. Gln11, Lys41, and Asn44 form one wall, and His119, Asp121, and Ala122 form the other. His12, Asn44, Thr45, and Phe120 form the floor of the B1 subsite. This discussion will focus on structural deviations observed in residues constituting the active site (Figures 2 and 3).

Gln11. The side chain N$_2$ of Gln11 can donate a hydrogen bond to a phosphoryl oxygen in the active site. Site-directed mutagenesis studies in which Gln11 is replaced by an alanine, asparagine, and histidine residue have shown that the role of Gln11 is to prevent the nonproductive binding of substrate (41). In the structure of the RNase A-d(CpA) complex, N$_2$ of Gln11 forms a hydrogen bond with a nonbridging vanadyl oxygen, perhaps mimicking its interaction with the transition state (58, 60). The side chain N$_2$ of Gln11 forms a hydrogen bond with a bridging phosphoryl oxygen in an RNase A·d(CpA) complex and with a water molecule in an RNase A·3′-CMP complex (49).

In the wild-type monoclinic structure, N$_2$ of Gln11 forms a 3.0 Å hydrogen bond with a conserved water molecule in the active site, but O$_{41}$ forms no hydrogen bonds to surrounding water molecules (48). In the structure of D121N RNase A, the side chain of Gln11 adopts a slightly different
conformation. The side chain N$_2$ of Gln11 forms a longer (3.4 Å) hydrogen bond with the conserved active-site water molecule, and O$_1$ forms a 2.9 Å hydrogen bond with a new water molecule. In the sD121N analogue, N$_2$ of Gln11 adopts the same conformation as it does in wild-type RNase A, forming a 2.8 Å hydrogen bond with the conserved active-site water molecule.

In the wild-type trigonal structure, N$_2$ of Gln11 forms a 2.6 Å hydrogen bond with the conserved active-site water and a 3.0 Å hydrogen bond with a sulfate oxygen bound in the active site (49). The conserved active-site water is displaced by C$_1$ of an acetate ion in the D121A variant. The result is a small shift of N$_2$ away from the acetate (due to a 30° rotation around χ_2), with O$_1$ forming a hydrogen bond with a new water molecule. In the sD121A structure, N$_2$ of Gln11 forms a 2.8 Å hydrogen bond with the conserved active-site water molecule. But unlike in the wild-type enzyme, N$_2$ in the sD121A analogue does not interact with the sulfate bound in the active site.

His12. In the classical mechanism for RNase A catalysis, N$_2$ of His12 acts as a base to abstract a proton from the 2'-hydroxyl group of RNA and thereby facilitate its attack on the phosphorus atom (33, 61). In all structures of RNase A in the Protein Data Bank, His12 is found in the same

Table 2: Steady-State Kinetic Parameters for Catalysis by Wild-Type RNase A, D121N RNase A, and D121A RNase A

<table>
<thead>
<tr>
<th>substrate</th>
<th>RNase A</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>%</th>
<th>K_m (mM)</th>
<th>%</th>
<th>k_{cat} / K_m (mM$^{-1}$ s$^{-1}$)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>UpA</td>
<td>wild-type</td>
<td>890 ± 30</td>
<td>100</td>
<td>0.38 ± 0.03</td>
<td>100</td>
<td>2300 ± 190</td>
<td>100</td>
</tr>
<tr>
<td>D121N</td>
<td>190 ± 20</td>
<td>21</td>
<td>1.6 ± 0.2</td>
<td>420</td>
<td>120 ± 20</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>poly(C)</td>
<td>wild-type</td>
<td>475 ± 10</td>
<td>100</td>
<td>0.14 ± 0.01</td>
<td>100</td>
<td>3300 ± 200</td>
<td>100</td>
</tr>
<tr>
<td>D121N</td>
<td>51 ± 2</td>
<td>11</td>
<td>0.10 ± 0.01</td>
<td>71</td>
<td>510 ± 60</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>D121A</td>
<td>8.2 ± 0.3</td>
<td>1.7</td>
<td>0.20 ± 0.02</td>
<td>140</td>
<td>40 ± 4</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>cUMP</td>
<td>wild-type</td>
<td>3.7 ± 0.2</td>
<td>100</td>
<td>2.3 ± 0.5</td>
<td>100</td>
<td>1.6 ± 0.3</td>
<td>100</td>
</tr>
<tr>
<td>D121N</td>
<td>1.55 ± 0.11</td>
<td>42</td>
<td>2.7 ± 0.7</td>
<td>120</td>
<td>0.58 ± 0.10</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>D121A</td>
<td>0.187 ± 0.006</td>
<td>5.1</td>
<td>1.6 ± 0.2</td>
<td>70</td>
<td>0.11 ± 0.01</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

* Data were obtained at 25 °C in 0.10 M MES-NaOH buffer (pH 6.0) containing NaCl (to I = 0.10 M).
position regardless of the crystallization conditions, solvent molecules, or ligand in the active site (62; L. W. Schultz and R. T. Raines, unpublished results). His12 forms a hydrogen bond between Nε1 of its side chain and the main chain carbonyl of Thr45 and between Nε2 and a water molecule or a ligand in the active site. The position of His12 in the D121N or D121A variants has not changed, overlapping quite well with His12 from the sD121N and sD121A structures. In the D121N structure, Nε2 of His12 forms a 2.7 Å hydrogen bond with a water molecule in the active site. A similar 2.7 Å hydrogen bond is also found in the active site. A similar 2.7 Å hydrogen bond with a water molecule in the active site. The side chain of Lys41 has been implicated in transition-state stabilization, contributing 10^5-fold to catalysis (63). In addition, Nε of Lys41 has been shown to form a hydrogen bond with the 2′-oxygen of 3′-CMP and to a bridging vanadyl oxygen of uridine 2′,3′-cyclic vanadate (49, 58). In the D121N and D121A variants, the side chain of Lys41 has clearly defined density and exists in a fully extended conformation. In the wild-type monoclinic and trligonal structures, Nε of Lys41 forms a hydrogen bond (2.6 and 2.7 Å, respectively) with O41 of Asn44. The structures of the D121N and D121A variants have the same hydrogen bond (2.8 and 2.9 Å, respectively) between Nε of Lys41 and O41 of Asn44, but Nε of the D121A enzyme makes an additional 2.5 Å hydrogen bond with a water molecule in the active site. In the sD121N and sD121A analogues, Nε of Lys41 also forms a hydrogen bond (2.9 and 3.2 Å, respectively) to O41 of Asn44. As in the D121A variant, however, Nε of Lys41 in the sD121N analogue forms an additional 2.7 Å hydrogen bond with a water molecule in the active site.

Table 3: pH Dependencies of the Steady-State Kinetic Parameters for the Hydrolysis of cUMP by Wild-Type RNase A, D121N RNase A, and D121A RNase A

<table>
<thead>
<tr>
<th>pH</th>
<th>kcat(s⁻¹)</th>
<th>Km (mM)</th>
<th>kcat(s⁻¹)</th>
<th>Km (mM)</th>
<th>kcat(s⁻¹)</th>
<th>Km (mM)</th>
<th>Δε293 (M⁻¹ cm⁻¹)</th>
<th>Δε293 (M⁻¹ cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.00</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>1.10 ± 0.05</td>
<td>1.10 ± 0.05</td>
</tr>
<tr>
<td>3.50</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>1.10 ± 0.05</td>
<td>1.10 ± 0.05</td>
</tr>
<tr>
<td>4.00</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>1.10 ± 0.05</td>
<td>1.10 ± 0.05</td>
</tr>
<tr>
<td>4.50</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>1.10 ± 0.05</td>
<td>1.10 ± 0.05</td>
</tr>
<tr>
<td>5.00</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>1.10 ± 0.05</td>
<td>1.10 ± 0.05</td>
</tr>
<tr>
<td>5.50</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>0.09 ± 0.01</td>
<td>2.47 ± 0.07</td>
<td>1.10 ± 0.05</td>
<td>1.10 ± 0.05</td>
</tr>
</tbody>
</table>

Data were obtained at 25 °C in 0.1 M buffer containing NaCl (to I = 0.10 M). Letters in parentheses denote buffer: F = formic acid, A = acetic acid, M = MES, T = Bis-Tris, B = BICINE, P = MOPS, and S = AMPSO. * Represents kcat/Km rather than kcat.

Figure 4: Plot of log(kcat/Km) vs pH for the hydrolysis of cUMP by wild-type RNase A (•), D121N RNase A (○), and D121A RNase A (+). The curves are nonlinear least-squares fits of the data to eq 1. To simplify comparisons, the values of kcat/Km for D121N RNase A and D121A RNase A were multiplied by scaling factors of 2.2 and 13, respectively.
Movement of the loop containing residues 65–72 away from the active site has been proposed to be a major contributor to the reduced activity of the sD121N and sD121A analogues (30). The main chain atoms of residues 65–72 in the trigonal sD121N structure have an average shift of 0.76 Å away from the wild-type main chain. In contrast, the same atoms in the monoclinic D121N structure have an average shift of 0.45 Å away from the wild-type main chain, suggesting that the crystallization conditions and not the amino acid substitution are responsible for the larger shift.

Other significant differences exist between the D121N and sD121N structures (Figure 3A). The hydrogen bond between the main chain N of Lys66 and Oβ of Asn121 is 2.9 Å in the D121N variant but 3.2 Å in the sD121N analogue. The side chain Nε of Lys66 forms a 3.3 Å hydrogen bond with the main chain O of Asn121 in the D121N variant but a 3.5 Å hydrogen bond with Oα of Asn121 in the sD121N analogue. Semisynthetic F120L and F120Y analogues of RNase A in the trigonal form also form hydrogen bonds between Nε of Lys66 and Oα of Asp121, but neither forms a hydrogen bond with the main chain O of Asp121 (65). Another difference is more dramatic, as it involves the flipping of the Lys66–Asn67 peptide bond. The ϕ,ψ angles of Lys66 and Asn67 for wild-type RNase A (−56°,−35° and −85°,1°) and the D121N variant (−55°,−39° and −82°,−5°) are similar, but those for the sD121N analogue (−84°,83° and 166°,−26°) differ. In the sD121N structure, a water molecule occupies the position of the main chain O in the D121N structure. This water molecule in the sD121N structure is only 2.1 Å (which is an unrealistic distance) from the main chain N of Asn67. We therefore suspect that the discrepancy between the location of residues 65–72 in the D121N and sD121N structures is largely due to an error in electron density map interpretation.

Residues 65–72 in D121A RNase A are almost identical in structure to residues 65–72 in the sD121A analogue. The loss of the hydrogen bond between the side chain of residue 121 and the main chain N of Lys66 has caused the main chain atoms in residues 65–72 in both structures to move away from the wild-type main chain by an average of 0.7 Å. Moreover, the Lys66 side chain forms no hydrogen bonds to the protein in either structure. The absence of this hydrogen bond is, however, not uncommon [PDB entries 1lsq and 1rnc (66, 67)]. Although the Asp121 side chain to Lys66 main chain hydrogen bond appears to be important in stabilizing the structure of residues 65–72, it is unlikely that hydrogen bonds to the side chain of Lys66 play a significant role in that stabilization.

His119. In the classical mechanism of RNase A catalysis (Figure 1), His119 acts as an acid by donating a proton to the 5′-oxygen to facilitate its displacement (33, 61). The side chain of His119 has been shown to occupy two distinct positions, denoted as A and B, which are related by a rotation around χ1 to dihedral angles of approximately 159° and −60°, respectively (68, 69). The active-site histidine residue in carbonic anhydrase II undergoes a similar rotation (70). There has been considerable debate as to which position of His119 in RNase A is catalytically relevant because the imidazole nitrogens have access to the active site in both orientations (30). It has also been argued that His119 is in position A during catalysis of transphosphorylation and in position B during catalysis of hydrolysis (69). In position A, Nε of

Figure 5: Plot of log(k_{cat}) vs pH for the hydrolysis of cUMP by wild-type RNase A (○), D121N RNase A (×), and D121A RNase A (+). The curves are nonlinear least-squares fits of the data to eq 2. To simplify comparisons, the values of k_{cat} for D121N RNase A and D121A RNase A were multiplied by scaling factors of 1.6 and 16, respectively.

Figure 6: Plot of $-\log(K_p)$ vs pH for the hydrolysis of cUMP by wild-type RNase A (○), D121N RNase A (×), and D121A RNase A (+). The curves are nonlinear least-squares fits of the data to eq 3. No scaling factors were applied to these data.
His119 forms a hydrogen bond with O$_{\delta1}$ of Asp121, which directs N$_{\delta1}$ of His119 toward the active site where it can form a hydrogen bond with a ligand (49). In the absence of a ligand, N$_{\delta1}$ of His119 forms no apparent hydrogen bonds to water molecules (48). In the RNase A•3'-CMP complex, the side chain of His119 is in position B, bringing N$_{\alpha2}$ within 3 Å of a nonbridging phosphoryl oxygen of 3'-CMP. In position B, N$_{\alpha1}$ of His119 is distal from the active site. In the crystalline RNase A•d(CpA) complex, the B2 subsite is occupied by adenine and the His119 side chain is in position A (49). If the His119 side chain were in position B, the imidazole ring would be in direct contact with the purine base and would create a steric clash (L. W. Schultz and R. T. Raines, unpublished results). It is therefore unlikely that His119 catalyzes RNA transphosphorylation reactions from position B.

The side chain of His119 occupies position A in the D121N structure and overlaps with His119 in the wild-type structure almost exactly, with a χ_1 of 160°. The side chain N$_{\alpha2}$ of His119 forms a 2.6 Å hydrogen bond with N$_{\delta2}$ of Asn121, and N$_{\delta3}$ forms no hydrogen bonds. Similarly, the side chain of His119 occupies position A in the D121A structure but has shifted toward the active site by a 15° rotation about a χ_1 of 175°. In the absence of a hydrogen-bonding side chain at residue 121, N$_{\alpha2}$ of His119 forms no hydrogen bonds, and N$_{\alpha1}$ of His119 forms a 2.5 Å hydrogen bond with the acetate ion in the active site. In the sD121A ($\chi_1 = -50°$) and sD121N ($\chi_1 = -49°$) analogues, the side chain of His119 occupies position B. Others have concluded that, in the absence of a hydrogen bond with the side chain of Asp121, His119 would prefer position B over position A (30). We too expected a priori that replacement of Asp121 would shift the equilibrium in favor of position B because of the loss of the favorable His••Asp interaction. Yet in the structures of crystalline D121N RNase A and D121A RNase A, His119 is in position A (Figures 2 and 3). It appears that the position of His119 is more dependent on crystallization conditions than on the identity of residue 121. Similarly, the position of His119 has been shown to depend on the pH (65) and ionic strength (62) of the crystallization solution. Finally, unlike in serine hydrolases (71), C$_{\alpha1}$ of His119 is not proximal to a main chain O in either position A or position B. (Likewise, C$_{\alpha1}$ of His12 is not near a main chain O.)

Asn121. At a resolution of 1.6 Å, it is impossible to distinguish N$_{\delta2}$ and O$_{\delta1}$ in the side chain of Asn121. It is, however, possible to distinguish these atoms on the basis of their hydrogen bonding schemes. In our model, O$_{\delta1}$ of Asn121 occupies a position similar to that of O$_{\delta2}$ in wild-type RNase A, forming a 2.9 Å hydrogen bond with the main chain N of Lys66. This orientation is sensical because it is unlikely that N$_{\delta2}$ of Asn121 could be close to a main chain nitrogen. This orientation places N$_{\delta2}$ of Asn121 near N$_{\alpha2}$ of His119. At pH 5.3 (which is the pH of the crystallization buffer), N$_{\alpha2}$ of His119 should be protonated, thereby rendering its interaction with the Asn121 side chain unfavorable. But, the crystals of D121N RNase A were grown in MPD, a solvent less polar than water. Accordingly, the p$_{K_a}$ of His119 in the crystal is likely to be smaller than in water. We therefore propose that His119 is in the neutral imidazole state in which N$_{\alpha1}$ is protonated and that N$_{\alpha2}$ forms a 2.6 Å hydrogen bond with the side chain of Asn121.

A water molecule forms a bridging hydrogen bond between N$_{\delta2}$ of Asn121 and the main chain N of Asn67. The N$_{\delta2}$••water hydrogen bond distance is 3.1 Å with an N$_{\delta2}$••H••O angle of 120°. This water molecule, which is conserved in several RNase A structures, could stabilize the conformation of residues 65–72 by linking them to residue 121. In the sD121N analogue, the water molecule has moved significantly, forming a long hydrogen bond with the main chain N of Asn67 and perhaps resulting in a shift of residues 65–72 away from the active site. Still, the side chains of Asn121 in the D121N and sD121N structures overlap almost exactly (Figure 3A).

Ala121. The main chain near residue 121 in the D121A variant remains in the same conformation as in the trigonal wild-type structure. The side chain C$_{\beta}$ of Ala121 overlaps directly with C$_{\beta}$ of Asp121 in the wild-type RNase structure. In the D121A variant, a water molecule takes the place of O$_{\delta2}$ of Asp121 and forms a 3.2 Å hydrogen bond with the main chain N of Lys66. This water molecule is absent from the sD121A structure. In addition, the conserved water molecule that forms a bridging hydrogen bond between O$_{\delta1}$ of Asp121 and the main chain N of Asn67 in the wild-type enzyme is missing in the D121A and sD121A structures.

Catalysis by D121N RNase A and D121A RNase A. The effect of replacing Asp121 on k$_{cat}$/K$_m$ and k$_{cat}$ is small, but significant (Tables 2–4). Substitution with an asparagine residue decreases the rate constants for transphosphorylation by 10-fold and those for hydrolysis by 10$^{0.3}$-fold (Table 2). Substitution with an alanine residue decreases the rate constants for transphosphorylation by 102-fold and those for hydrolysis by 10-fold (Tables 2–4). The differential effects on transphosphorylation and hydrolysis are still greater than these values suggest because a chemical step does not limit the rate of cleavage of UpA or poly(C) (72). We conclude that the contribution of Asp121 to transphosphorylation is greater than that to hydrolysis.

The small contribution of Asp121 to catalysis belies the importance of the hydrogen bond between His119 and Asp121. This contribution is similar to that observed in an analogous study on the structure and function of phosphatidylinositol-specific phospholipase C (73). Yet, a His••Asp dyad has been proposed to form a low-barrier hydrogen bond of extraordinary strength during catalysis by the protease chymotrypsin (74, 75), though this interpretation is controversial (76). One criterion for such a bond is an 1H chemical shift of 17–20 ppm (77). The 1H chemical shift of N$_{\delta2}$H of His119 appears at a much higher field, <12 ppm (J. L. Markley, personal communication). By this criterion, the His••Asp dyad of unliganded RNase A does not have a low-barrier hydrogen bond. In theory, the His••Asn dyad of D121N RNase A could also form a low-barrier hydrogen bond. Another criterion for such a bond is that it arise from acids with matched pK$_a$ values (79). The pK$_a$ values of imidazole [14.2 (81)] and acetamide [15.1 (80)], which are reasonable models for the side chains of His119 and Asn121, respectively, are indeed similar. The existence of a low-barrier hydrogen bond would, however, require that the side chain of His119 be in its neutral imidazole form. pH–rate profiles for catalysis by D121N RNase A (Figures 4–6) and 1H NMR titrations of His119 in the D121N variant (54) indicate that His119 titrates between its imidazole and imidazolium forms with a pK$_a$ value similar to that of His119.
in wild-type RNase A. These data deny the existence of a low-barrier hydrogen bond in the His...Asn dyad.

The kinetics of catalysis by D121N RNase A and D121A RNase A illuminate mechanistic aspects of the equilibrium of His119. A Coulombic interaction, like that between a cationic histidine side chain and an anionic aspartate side chain, has a long range. In contrast, a hydrogen bond, like that between a histidine side chain and an aspartate or asparagine side chain, has a short range. Dispersion interactions between a histidine side chain and an alanine side chain are insignificant at a distance beyond van der Waals radii. We find that RNase A variants with an aspartate, asparagine, or alanine residue in position 121 have different abilities to catalyze the hydrolysis reaction (Tables 3 and 4). We therefore conclude that His119 is likely to be proximal to residue 121 during catalysis of hydrolysis and that hydrolysis can occur with His119 in position A.

pH Dependence of Catalysis. The overall shape of the pH–rate profiles for catalysis by RNase A can be interpreted by using a model in which the only important protonation states are those of the two active-site histidine residues, which act in concert during catalysis [Figure 1 (82)]. Accordingly, log–log plots of the pH–rate profiles for \(k_{cat}/K_m \) and \(k_{cat} \) are expected to be bell-shaped with slopes approaching 1. The \(k_{cat}/K_m \) profiles that have been reported are indeed bell-shaped, but the shape of the \(k_{cat} \) profiles varies with the substrate (83–86). In general, workers who have used cCMP as the substrate have found that the slope is 1 for the acidic leg of the \(k_{cat}/K_m \) profiles, but those who have used cUMP have found that the slope is <1. The large values of \(K_m \) and strong product inhibition observed for the hydrolysis step at high pH make the basic leg difficult to characterize. These factors are likely to be the cause of the discrepant values reported for \(k_{cat} \) at high pH (83).

Our data on the pH dependence of \(k_{cat}/K_m \) for the hydrolysis of cUMP are consistent with those of previous studies (for a review, see ref 87). Our data on the pH dependence of \(k_{cat} \) for the hydrolysis of cUMP are most similar to those of workers who, like us, accounted for product inhibition by using the integrated rate equation (86). This approach yields a slope near 1 at values of pH <4.5, as well as values of \(k_{cat} \) and \(K_m \) at values of pH >7 higher than those reported by others (84, 85).

Macroscopic pK\(_a\) values for the two histidine residues of wild-type RNase A can be derived from the \(k_{cat}/K_m \) profile (Table 4). The values are consistent with results from NMR spectroscopy (54, 88–91). Differences for any given pK\(_a\) value are within error, especially when recalling that, when two pK\(_a\)'s have similar values, the average value is much better determined from pH–rate profiles than are the individual values (92). The pK\(_a\) values of the D121N and D121A enzymes that are derived from pH–rate profiles (Table 4) do not deviate significantly from those of wild-type RNase A, at least when \(I = 0.10 \) M.

Role of Asp121 in Catalysis. pH–rate profiles for catalysis by D121N RNase A are similar to those for catalysis by the wild-type enzyme (Figures 4–6). This similarity suggests that the same titratable groups are participating in catalysis and that these groups have similar pK\(_a\) values. Yet in the structure of D121N RNase A, N\(_{2,2}\) rather than O\(_{2,1}\) of Asn121 is oriented toward His119. This orientation appears to stabilize a neutral form of the imidazolyl side chain in which N\(_2\) is unprotonated and N\(_{3,1}\) is protonated. This tautomer of His119 is likely to be ineffective, either as an acid during the transphosphorylation reaction or as a base during the hydrolysis reaction. The major role of Asp121 thus appears to be to orient the proper tautomer of His119 for catalysis. This role is similar to that assigned to the aspartate residue in the catalytic triad of trypsin (26). In the D121A enzyme, Ala121 cannot interact with the imidazolyl group of His119. Yet, D121N RNase A is a better catalyst than is D121A RNase A (Tables 2–4). Thus, the His119...Asn121 interaction observed in the crystalline D121N enzyme (Figures 2 and 3) is unlikely to exist in solution. Rather, Asn121 is likely to move such that His119 can effect catalysis.

Conclusions. Replacing Asp121, a residue that is conserved in pancreatic ribonucleases, with an asparagine or alanine residue has no effect on the overall three-dimensional structure of RNase A. Replacing Asp121 decreases the rate of transphosphorylation by \(\leq 10^2 \)-fold and the rate of hydrolysis by \(\leq 10 \)-fold. Thus, Asp121 of RNase A makes a significant but not a substantial contribution to catalysis. The likely role of Asp121 is simply to position the proper tautomer of His119, which Asn121 in the crystalline D121N enzyme fails to do. We speculate that the role of Asp121 in catalysis alone is unlikely to warrant its complete conservation in pancreatic ribonucleases (54).

ACKNOWLEDGMENT

We thank B. R. Kelemen, P. A. Leland, and B. M. Templer for comments on the manuscript and Prof. J. L. Markley for advice. We are grateful to Prof. I. Raymond, Prof. H. M. Holden, and the members of their research groups for many helpful conversations and for the use of their X-ray data collection and computational facilities.

REFERENCES

