Contrast Agents for Magnetic Resonance Imaging Synthesized with Ring-Opening Metathesis Polymerization

Matthew J. Allen, Ronald T. Raines, and Laura L. Kiessling*

Departments of Chemistry and Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706

Received February 27, 2006; E-mail: kiessling@chem.wisc.edu

Magnetic resonance imaging (MRI) is indispensable for diagnostic clinical medicine and biomedical research.1 By enhancing specific features of an image, contrast agents improve the sensitivity and therefore utility of MR images. Poly(aminocarboxylate)-based GdIII chelates are currently the only agents used clinically. Recently, Raymond and co-workers developed hydroxypyridonate (HOPO)-based GdIII chelates that are more effective at enhancing the contrast of MR images.2,3 This attribute of HOPO complexes encourages the development of even more effective chelates. Here, we describe oligomeric HOPO-based GdIII chelates generated by using ring-opening metathesis polymerization (ROMP). This approach provides contrast agents with extraordinary sensitivity and versatility.

The strength of GdIII-based contrast agents can be improved by increasing the number of coordinated water molecules, optimizing the water exchange rate between bound and bulk water molecules, increasing the rotational correlation time, or increasing the number of GdIII ions per molecule.4 The HOPO-based agents have an increased number of water molecules in the inner environment and a near optimal water exchange rate; together, these features lead to a higher relaxivity.5 Increasing the rotational correlation time can further improve these agents as with poly(aminocarboxylate)-based systems involving proteins, linear polymers, dendrimers, and micellar aggregates.6,7 We reasoned that highly sensitive and tunable contrast agents could be made through incorporation of multiple HOPO-based GdIII chelates into an easily functionalizable macromolecule.

Our strategy for generating contrast agents with the desired attributes relies on ROMP. We envisioned that this synthetic strategy could afford the first multivalent HOPO-based agents. ROMP is an ideal polymerization method for this purpose because it can give rise to polymers with multiple sites that can be functionalized.7 Such flexibility is beneficial because the utility of contrast agents can be increased by equipping them with targeting moieties or fluorescent probes. Moreover, the use of ROMP is advantageous because it can yield polymers of well-defined length.6 Thus, our strategy allows for multiple GdIII ions to be incorporated into polymers of varying lengths, which should yield a series of agents with controlled relaxivities. We embedded a HOPO-based chelating moiety within a benzonorbornadiene unit that constitutes the backbone of the polymer upon ROMP. We integrated the chelator into the backbone to increase the rotational correlation time of the resulting macromolecules.

Polymeric contrast agents 10a and 10b were generated via a modular synthesis from benzonorbornadiene monomer 3 and HOPO-chelator 7 (Scheme 1). This strategy utilizes the novel attributes of the new monomer 3: a lanthanide binding catechol and a reactive site from which a complete chelate can be generated. This convergent strategy provides a means to use the succinimidyl esters to conjugate other groups, for example, for targeting or fluorescence imaging.

To synthesize the target polymers 8a and 8b we employed the ruthenium initiator ((H2IMes)(3-Br-py)2(Cl)2Ru=CPh). Its rate of initiation relative to propagation affords polymers of well-defined average lengths.8,9 Another critical feature of this catalyst is functional group tolerance; our monomer 3 contains phenolic ether and activated ester groups. Initiation occurred at 0 °C with complete consumption of 3 occurring in <5 h. After the starting material was consumed, the ketone-containing enol ether was added to terminate the polymerization. The ketone terminator provides a site for orthogonal functionalization via its ability to form adducts with nucleophiles such as hydrazides.9 Monomer-to-initiator ratios of 10:1 and 30:1 were used to explore the effect of various polymer lengths on contrast agent strength; the resulting polymers were characterized by using gel permeation chromatography and NMR spectroscopy.

From 8a and 8b, oligomeric contrast agents were generated (Scheme 2A). Compound 8a was reacted with 0.25 equiv per monomer of HOPO-chelator 7 and 0.75 equiv per monomer of guanidinium-substituted spacer amine to yield oligomer 9a. The guanidinium-containing amine was used to cap any unreacted sites, prevent problems that could arise from having too many chelates per polymer, and increase the aqueous solubility of the polymer. Poor water solubility is a major drawback of HOPO-type chelates, and methods to improve solubility are currently being investigated by other research groups.11 Subsequent methyl ether removal and metatlation with GdCl3 yielded agent 10a. Polymer 8b was treated in a similar fashion to yield 10b. Additionally, the monoionic...
complex 11 was generated for control measurements (Scheme 2B). As predicted, 10b has an aqueous solubility (≥10 mM) that is superior to that of monoionic HOPO-based agents (<0.5 mM).5a

To evaluate the ability of agents 10a, 10b, and 11 to enhance contrast in MR images, the relaxivity values of these complexes were ascertained (Figure 1). Relaxivities were determined as the slope of the line generated by plotting the inverse of T_1 relaxation time versus concentration. The monomeric agent 11 has a relaxivity of 10.5 ± 0.8 mM\(^{-1}\)s\(^{-1}\), which is similar to that of other HOPO-based agents and nearly 3-fold that of clinically used agents.2 A significant increase in per GdIII ion relaxivity was not observed upon transition from the monomeric agent to the shorter oligomeric agent; however, an increase in relaxivity of 1.4-fold per GdIII ion was observed for the longer polymer. Not only is the GdIII relaxivity (light bars) increased by 1.4-fold but also the molecular relaxivity (dark bars) increases 10.6-fold upon incorporation of multiple GdIII chelates. Polymer 10b has a molecular relaxivity of 111 ± 1.5 mM\(^{-1}\)s\(^{-1}\) (Figure 1); when compared with agents used in the clinic, this value is nearly 30-fold greater.

Our approach of incorporating multiple HOPO-type GdIII chelates using ROMP yields polymers with extremely large molecular relaxivities. These large relaxivity values are proportional to rotational correlation times estimated from the molecular weights of linear polymers of GdIII diethylenetriaminopentaacetic acid.10b,12

The features of ROMP-derived polymers allow for functionalization of the monomer units and termini through orthogonal chemistry to yield multivalent, target-specific contrast agents. We envision that this strategy can be optimized to create hypersensitive, targeted imaging agents.

Acknowledgment. This research was supported by NIH Grants GM49975 (to L.L.K.) and CA73808 (to R.T.R.). We acknowledge Erin McElroy for helpful scientific discussions. We thank the NIH for a Ruth L. Kirschstein Postdoctoral Fellowship (AI603052).

Supporting Information Available: Synthetic methods and experimental details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

12. (a) Toth, E.; Helm, L.; Kellar, K. E.; Merbach, A. E. Chem.—Eur. J. 1999, 5, 1202–1211. (b) See the Supporting Information for the calculations used to approximate the rotational correlation times.