Synthesis of the Bicyclic Core of the Esperamicin/Calichemicin Class of Antitumor Agents

Stuart L. Schreiber* and Laura L. Kiessling

Department of Chemistry, Yale University
New Haven, Connecticut 06511

Received August 6, 1987

Over the past 10 years, considerable effort has been devoted to the elucidation of structure and mechanism of action of the potent antitumor protein complex neocarzinostatin (nbs)\(^1,2\) and its relative, auromycin.\(^3\) The biological properties of ncs reside completely within the highly unusual nonproteinal component, ncs chromophore, 1 (Scheme I). Edo has demonstrated that the DNA damaging properties of 1 can be traced to the bicyclic core comprised of an oxygenated enediyne.\(^4\) Recently, the structures of several members of a related class of DNA binding/damaging agents were simultaneously reported by chemists at Bristol-Myers\(^5\) and Lederle.\(^6,7\) The esperamicins (e.g., esperamicin A\(_1\), A\(_2\)) and calichemicins share a common bicyclic core structure equipped with an enediyne bridge that is integral to the DNA damaging and extreme tumoricidal properties of these compounds. A novel


(2) The absolute stereochemistry of substituents on the methylene cyclopentene core is unknown. The \(R,R\)-stereochemistry depicted in 1 is the configuration predicted by a DNA binding model developed in our laboratory (manuscript in preparation). Modeling and synthesis research in this area was presented (by S.L.S.) at the 30th National Organic Chemistry Symposium of the American Chemical Society, Vancouver, Canada, June 21–26, 1987.


The scheme of a proposed mechanism for the mechanism of DNA strand cleavage was suggested to involve bioreductive cleavage of the allylic trisulfide and Michael addition of the resultant thiolate into the neighboring bridgehead olefin. Such an action was proposed to facilitate coupling of the terminal sp carbons of the enediyne to form a phenylene diradical (Bergman reaction) and ultimately result in DNA damage via a hydrogen atom abstraction pathway. The chemistry of enediyynes and the binding interactions of systems such as 1 and 2 with DNA suggest a role for strained enediyynes as potential translatable DNA cleaving agents and facilitate the design of new chemotherapeutic agents. The bicyclic core structures represent important targets for synthesis since the acquisition of such materials would pave the way for detailed investigations into their reaction chemistry, including their behavior toward double-stranded DNA fragments. Herein, we report on an efficient procedure for the synthesis of the bicyclic core of the esperamicin/Calichemycin class of antitumor agents.

Our synthetic planning in this area was influenced by a consideration of plausible biogenetic origins of systems such as 1 and 2. A possible common precursor to both classes is represented by 3. NCS chromophore could be obtained from 3 by a series of transformations that include an electrocyclic ring closure (to 4), proton transfer (to 5), and oxygenation steps. The esperamycin/Calichemycin class requires an additional carbon at the acetylene terminus of 3 (added in a manner to provide 6). The vinylallene 6 (or oxidized equivalent) would be transformed into the esperamicin/Calichemycin skeleton 7 by an intramolecular (Type 2) Diels–Alder reaction. On inspection of models, it is evident that the enediyne connector provides a favorable geometric constraint for the cycladdition process. Accordingly, we proceeded to investigate the bicyclic core synthesis by the Diels–Alder pathway.

The synthesis of a cycloaddition precursor 12 is outlined in Scheme II. Compound 12 is available in six steps from (Z)-dichloroethylene by a route that forms three of the four bonds to the two acetylenes by application of the Castro–Stephens cross coupling reaction. Monocoupling of dichloroethylene with tert-butyldiphenylsilylacetylene proceeded smoothly at 0 °C to provide the (Z)-vinyl chloride 8. A second coupling (performed at room temperature) with diethoxy propargyl acetal delivered the (Z)-enediyne 9. The diene component 10 is available from 1-methoxybuten-3-yne (Aldrich) by hydrobromination in ether.

Metallation with n-butyllithium and addition to the aldehyde derived from 9 resulted in the carbonyl 11. Desilylation of 11 with tetrabutylammonium fluoride provided the corresponding terminal acetylene that was combined with methyl (E)-3-iodoacylate to afford the labile Diels–Alder progenitor 12.

The key core-forming cycladdition was performed on the tert-butyldimethylsilylethyl derivative 13. Heating a 0.02 M solution of 13 in benzene at reflux temperature in the presence of Kishi's radical inhibitor 14 afforded a 75% yield of the cycloduct 15 as a 7:1 mixture of diastereomers. The stereochemistry at the propargylic center of the major isomer 15 was determined by NOE difference experiments and corresponds to that proposed for the esperamycins. The remaining stereocenters in 15 follow from the (geometry imposed) exo transition state in the Diels–Alder reaction.

A series of transformations related to those described for the synthesis of 15 was performed in order to produce the p-methoxyphenyl ether 16. The deprotection of 16 was achieved according to the conditions reported by Fukuyama. The resultant allylic alcohol was oxidized (MoO₃) to afford the bridgehead enone 17. The spectroscopic data obtained from 17 are in full accord with the proposed structure. Most revealing was the detailed ¹H NMR spectrum that is recorded in the Supplementary Material. The bridgehead enone (present in 17) is a striking feature of the esperamicin/Calichemycin structures and has been proposed to play a central role in the priming mechanism for DNA damage. The synthesis of compounds related to 17 provides the opportunity to study (inter- and intramolecular) nucleophile-induced Bergman reactions of the cyclic enediyne according to the mechanistic proposals for the natural products. These studies are currently underway.

In summary, a concise and practical synthesis of the esperamicin/Calichemycin bicyclic core has been achieved. The modular nature of the reaction sequence is expected to provide access to a wide range of related systems. Investigations into the chemistry, biology, and pharmacology of nonnatural analogues are in progress.

Acknowledgment. These investigations were supported by the NSF (Presidential Young Investigator Award), the Alfred P. Sloan Foundation, and the Dreyfus Foundation (Teacher- Scholar Award, 1984–1989). Matching funds for the PYI were generously provided by Stuart Pharmaceuticals and Pfizer, Inc. We thank Dr. Terence W. Doyle (Bristol-Myers Co.) for several stimulating discussions on this topic and Dr. Glen Spears for many helpful suggestions.

Supplementary Material Available: Spectral data and experimental procedures for 8–13 and 15–17 (10 pages). Ordering information is given on any current masthead page.

1,2,3,4,5,6-Tris(bicyclo[2.2.2]octene)tropolium Ion: An All-Hydrocarbon Carbocation with Extraordinary Stability

Koichi Komatsu, Hidekazu Akamatsu, Yauhisa Jinbu, and Kunio Okamoto

Department of Hydrocarbon Chemistry
Faculty of Engineering, Kyoto University
Sakyo-ku, Kyoto, 606 Japan

Received October 19, 1987

How much stability can be attained by a carbocation composed of only carbon and hydrogen? Here we report the synthesis of a new tropolyl ion annealed with three bicyclo[2.2.2]octene units 1, which shows a pKₐ of 13.0, the highest value ever recorded. Also described is a possible reaction pathway for the formation of its precursor, the highly symmetrical benzene 2.

Continuous efforts have been made for the search of new carbocations possessing enhanced thermodynamic stability. So far, the cyclopropenylidionium ion substituted with guaiazulene21 or cyclopropyl groups2 is ranked as the most stable with a pKₐ value around 10.0. In the tropolyl ion series, σ-conjugative stabilization by poly(cyclopropyl) groups seems to be limited due to the saturation effect.3 Nevertheless, it is more effective than π-conjugation,4 inductive electron donation,5 or intramolecular charge-transfer interaction.6 In this connection, it has been shown that the annelation with a bicyclo[2.2.2]octene unit is more effective in stabilizing the tropolyl ion than that with a highly strained bicyclo[2.1.1]hexene unit.7 Thus, substantial stabilization is expected for the trisannelated cation 1.

For the synthesis of the precursor benzene 2, trimerization of bicyclo[2.2.2]octene or its equivalent seemed feasible. Following the Gassman’s method for generation of norbornylen,2 the dibromide 3 was lithiated with n-butyllithium at –78°C in THF.

and was treated with 10 mol % of nickelocene (or NiBr₂[PP₃]₂). After completion of the reaction by slowly warming to room temperature, there were isolated the expected benzene 2 and the trimeric dibromide 6 in yields of 33% and 18%, respectively. The rest of the products were a mixture of relatively low molecular weight bromides containing one to three bicyclooctene units, rather than high polymers. When 0.5 equiv of n-butyllithium was used, the dimeric dibromide 5 was obtained in 34% yield in place of any appreciable amount of 2. These results suggest that 2 is formed not necessarily by trimerization of bicyclo[2.2.2]octene but by way of consecutive coupling of the bicyclo[2.2.2]octene unit. This is supported also by the fact that 6 is quantitatively cyclized to 2 by the same procedure.

The CuBr-catalyzed ring expansion of 2 proceeded only by the use of a large excess (25 molar equiv) of diazomethane in refluxing 1,2-dichloroethane. The resulting cycloheptatriene,4 which was isolated in 15% yield (92% based on consumed 2) by chromatography over SiO₂(93%)-AgNO₃(7%), was treated with Ph₃C=SBF₅ to give the salt 1-SBF₅ in 91% yield.

The definite upfield shifts observed for both the 1H and 13C NMR signals of the tropolyl ring in 1 as compared with those in the bicyclo[2.2.2]octenotropolium ion 7b are indicative of decreased charge density on the cationic ring in 1 and its enhanced thermodynamic stability. The pKₐ value was then determined spectrophotometrically at 25°C in a glycerine (0.1 M)-NaOH (0.1 M) buffer prepared in 50% aqueous MeCN (pH 10). By further alkalification with 20% NaOH, the half-neutralization point, which corresponds to the pKₐ value, was attained at pH 13.0.8 In accord with this, 1 undergoes no reaction with such nucleophiles as PhS⁻ (pKₐ of the conjugate acid, 8.3), PhO⁻ (9.9), CO₃⁻ (10.3), and Et₂N⁺ (11.0). The enhanced stability of 1 is also demonstrated by its highly negative reduction potential (E_red = -1.120 V versus Ag/Ag⁺ in MeCN by cyclic voltammetry with a scan rate of 0.1 V/s).

(8) All new compounds were characterized by their IR, UV, 1H NMR, and 13C NMR spectral data and elemental analyses and/or mass spectroscopy. Selected spectral data for the important compounds are given below. For the full description of spectral data, see Supplementary Material. 1-SBF₅, mp 290–292°C dec; UV (MeCN) λₘₚp 256 (log ε = 4.71), 308 nm (4.01); 1H NMR (300 MHz, CDCl₃) δ 8.55 (1H, s), 4.11 (2H, s), 4.07 (2H, s), 3.56 (2H, s), 5.02 (1H, d), 1.44 (1H, d); 13C NMR (25 MHz, CDCl₃) δ 163.8 (s), 166.0 (s), 161.9 (s), 144.2 (d), 42.7 (d), 36.6 (d), 36.1 (d), 25.9 (d), 24.8 (t), 24.7 (t); mp 277–279°C (sealed tube); UV (MeCN) λₘₚp 222 (log ε = 3.62), 260 (2.47); 1H NMR (CDCl₃) δ 3.99 (6H, s), 1.75 (12H, d), 1.35 (17H, d); 13C NMR (CDCl₃) δ 134.2 (4d), 28.7 (d), 26.5 (t). 5: mp 118–125°C; 13C NMR (CDCl₃) δ 27.6 (4H, d). 5.1: mp >300°C; 1H NMR (CDCl₃) δ 143.9 (s), 119.4 (s), 42.2 (d), 38.1 (d), 26.4 (t), 26.3 (t). 6: mp 156-158°C; 1H NMR (CDCl₃) δ 6.72 (2H, s), 2.60 (4H, s), 1.50 (24H, br s); 13C NMR (CDCl₃) δ 143.9 (s), 139.7 (s), 118.9 (s), 42.4 (d), 39.3 (d), 34.8 (d), 26.8 (t), 26.7 (t), 26.4 (t), 8.88; mp >300°C; UV (MeCN) λₘₚp 262 (log ε = 4.73), 317 (3.93), 330 nm (3.91); 1H NMR (CDCl₃) δ 3.96 (6H, s), 2.82 (3H, s), 2.02 (12H, d), 1.42 (12H, d); 13C NMR (CDCl₃) δ 164.9 (s), 162.6 (s), 162.4 (s), 162.3 (s), 36.6 (d), 36.0 (d), 35.8 (d), 24.8 (t), 24.7 (t), 24.6 (t), 24.5 (t). 7 (9) 1H NMR (300 MHz, CDCl₃) δ 8.98 (5H, s), 3.76 (2H, s), 2.11 (4H, d), 1.46 (8H, d); 13C NMR (CDCl₃) δ 175.6 (s), 152.2 (d), 151.5 (d), 151.2 (d), 42.5 (d), 24.5 (s) (Nakazawa, T.; Nimmoto, Y.; Kubo, K.; Murata, I.; Angew. Chem. 1990, 454, 254 and ref 6). 8 (10) Averaged from triplicate values: 13.15, 12.95, and 12.88. This value was reproduced by using the phosphate-glycine-NaOH buffer and also for the phosphate-sulfate, Na₂SO₄ buffer. The neutralization was completely reversible, regenerating 1 after acidification. This value does not seem to be due to destabilization of the neutral precursor, since the steric constraint between the neighboring bicyclic units is even more severe in the planar catiionic form than in the boat-shaped precursor cycloheptatriene.