High Resolution X-ray Structure of Tyvelose Epimerase from

Salmonella typhi

Nicole M. Koropatkin‡, Hung-wen Liu‡, and Hazel M. Holden‡,*

‡Department of Biochemistry, University of Wisconsin, Madison, WI 53706

†Division of Medicinal Chemistry, College of Pharmacy, and Department of
Chemistry and Biochemistry, University of Texas, Austin, TX 78712

*To whom correspondence should be addressed.

EMAIL: Hazel_Holden@biochem.wisc.edu
PHONE: 608-262-4988. FAX: 608-262-1319.

§This research was supported in part by grants from the NIH (DK47814 to H. M.
H. and GM35906 to H-w. L.).

Running Title: structure of tyvelose epimerase

X-ray coordinates have been deposited in the Protein Data Bank (XXX) and
will be released upon publication.

Key Words: x-ray crystallography, protein structure, CDP-tyvelose 2-epimerase,
O-antigen, short chain dehydrogenase/reductase superfamily
SUMMARY

Tyvelose epimerase catalyzes the last step in the biosynthesis of tyvelose by converting CDP-\(d\)-paratose to CDP-\(d\)-tyvelose. This unusual 3,6-dideoxyhexose occurs in the \(O\)-antigens of some types of Gram-negative bacteria. Here we describe the cloning, protein purification, and high-resolution x-ray crystallographic analysis of tyvelose epimerase from *Salmonella typhi* complexed with CDP. The enzyme from *S. typhi* is a homotetramer with each subunit containing 339 amino acid residues and a tightly bound NAD\(^+\) cofactor. The quaternary structure of the enzyme displays 222 symmetry and can be aptly described as a dimer of dimers. Each subunit folds into two distinct lobes: the N-terminal motif responsible for NAD\(^+\) binding and the C-terminal region that harbors the binding site for CDP. The analysis described here demonstrates that tyvelose epimerase belongs to the short chain dehydrogenase/reductase superfamily of enzymes. Indeed, its active site is reminiscent to that observed for UDP-galactose 4-epimerase, an enzyme that plays a key role in galactose metabolism. Unlike UDP-galactose 4-epimerase where the conversion of configuration occurs about C-4 of the UDP-glucose or UDP-galactose substrates, in the reaction catalyzed by tyvelose epimerase, the inversion of stereochemistry occurs at C-2. On the basis of the observed binding mode for CDP, it is possible to predict the manner in which the substrate, CDP-paratose, and the product, CDP-tyvelose, might be accommodated within the active site of tyvelose epimerase.
Carbohydrate epimerases are found in all living organisms and play crucial roles in numerous biochemical pathways as recently reviewed (1). The ability of an organism to invert stereochemistry at a specific chiral center of a carbohydrate can determine its potential to utilize a particular carbon source, form a functional cell wall, and/or act pathogenically towards a host (2). Due to the diverse nature of both the chemical composition of carbohydrates and their various metabolic roles, several different epimerization mechanisms have evolved. These mechanisms can be broadly classified into two categories: those that function on activated carbon centers lying adjacent to carbonyl, carboxylic acid or ester functional groups, and those that epimerize unactivated carbon centers.

Perhaps the best characterized member of the latter group, both kinetically and crystallographically, is UDP-galactose 4-epimerase (3, 4). This enzyme plays a key role in the Leloir pathway for galactose metabolism by interconverting UDP-galactose and UDP-glucose. The proposed catalytic mechanism of this epimerase involves several key features: (1) transfer of the hydride from C-4 of the sugar to NAD⁺ to form NADH and abstraction of the 4'-hydroxyl hydrogen of the sugar by an enzymatic base to yield a 4'-ketopyranose intermediate (2) rotation of this intermediate by approximately 180° about the phosphoryl-oxygen bond connecting the UDP and sugar moieties and (3) transfer of the hydride from NADH back to the opposite face at C-4 of the keto-sugar intermediate and protonation of the resulting hydroxyl group. The enzymatic
base in UDP-galactose 4-epimerase is thought to be a conserved tyrosine residue (4).

UDP-galactose 4-epimerase belongs to a subclass of NAD(P)-dependent enzymes referred to as the short-chain dehydrogenases/reductases (5). Members of this family contain a characteristic Tyr-XXX-Lys motif in which the conserved tyrosine is thought to play a key role in catalysis. Other proteins belonging to this subfamily include dTDP-D-glucose 4,6-dehydratase (6), GDP-mannose 4,6-dehydratase (7, 8), and ADP-L-glycero-D-manno-heptose 6-epimerase (9), among others. Alignments of the amino acid sequences for these enzymes with the Swiss-Prot databank indicate that they share at least 20 % and 40 % sequence identity and similarity, respectively. On the basis of such amino acid sequence alignments another member of the superfamily has recently been identified, namely CDP-tyvelose 2-epimerase (10).

CDP-tyvelose 2-epimerase, hereafter referred to simply as tyvelose epimerase, is involved in the synthesis of tyvelose, a 3,6-dideoxyhexose that occurs in the O-antigens of some types of Gram-negative bacteria (11). Tyvelose is produced via a complex biochemical pathway that employs CDP-D-glucose as the starting ligand. The last step in the pathway, the conversion of CDP-D-paratose to CDP-D-tyvelose, is catalyzed by tyvelose epimerase as outlined in Scheme 1. Interestingly, tyvelose is found in the O-antigens of some pathogens such as Salmonella typhi and Yersinia pseudotuberculosis IVA. In that tyvelose is the major immunological determinant in these bacteria, screening
for the tyvelose epimerase gene via PCR amplification is being considered for
earlier identification and treatment of *S. typhi* infections (12).

Here we describe the cloning, purification, and high-resolution x-ray
crystallographic analysis of tyvelose epimerase from *S. typhi*. Crystals amenable
for a high-resolution x-ray investigation of the enzyme were grown in the
presence of CDP. The enzyme is a homotetramer displaying 222 symmetry.
Each subunit contains 339 amino acid residues and one tightly bound NAD$^+$
moiety. The subunit is distinctly bilobal with an N-terminal region responsible for
dinucleotide binding, a C-terminal motif important for CDP positioning, and an
active site wedged between these two lobes. Side chain functional groups
directly involved in NAD$^+$ binding include Asp 32, Asp 58, Ser 123 and Lys 169
while Ser 194, Asn 126, Lys 127, Gln 235, Arg 237, Arg 299, and Asp 302
function in anchoring the CDP moiety into the active site. The x-ray analysis
described here defines both the quaternary structure of tyvelose epimerase and
its active site geometry, and confirms that the enzyme belongs to the short chain
dehydrogenase/reductase superfamily.
EXPERIMENTAL PROCEDURES

Cloning of the Tyvelose Epimerase Gene. The sequence of the tyvelose epimerase gene, *tyv*, from *S. typhi* has been reported and allowed for the design of primers for gene amplification from genomic DNA. Genomic DNA samples from *S. typhi* clinical isolates CDC #87-2059 and CDC #88-2009 were generous gifts from Dr. Stanley Maloy at the University of Illinois, Urbana-Champaign. The tyvelose epimerase gene was PCR amplified from genomic DNA such that the forward primer 5’-CATGCCATGGCCAAGCTTTTAATTACCGGTGGA-3’ and reverse primer 5’-CCGCTCGAGTATAGAACTAGTCCATCATACATTTTC-3’ added *NcoI* and *XhoI* cloning sites, respectively. In order to preserve the *NcoI* recognition sequence of CCATGG, the codon GCC (encoding alanine) was inserted before the second residue of the gene. The gene was PCR amplified with Platinum Pfx DNA polymerase (Invitrogen) according to the manufacturer’s instructions and standard cycling conditions. The PCR product was purified with the QIAquick PCR Purification kit (Qiagen Inc.), followed by digestion with both *NcoI* and *XhoI* at 37 °C overnight. The gene was separated from digestion by-products on a 1.0 % agarose gel, excised from the gel, and purified with QIAquick Gel Purification kit (Qiagen Inc.). The purified tyvelose epimerase gene was then ligated into the expression vector pET-28a (Novagen) that was previously cut with the same restriction enzymes. *Escherichia coli* DH5α cells were transformed with the ligation mixture and then plated onto LB media.
supplemented with 30 µg/ml kanamycin. Individual colonies were selected, cultured overnight, and plasmid DNA was extracted with the QIAprep Spin Miniprep Kit (Qiagen Inc.). Plasmids were tested for insertion of the tyv gene by digesting with Ncol and XhoI. Positive clones were sequenced with the ABI Prism™ Big Dye Primer Cycle Sequencing Kit (Applied Biosystems, Inc.) to confirm that no mutations were introduced during PCR amplification.

Protein Expression. For protein expression, E. coli Rosetta(DE3)pLysS (Novagen) cells were transformed with the pET28a-tyv plasmid and plated onto LB media supplemented with 30 µg/ml kanamycin. After approximately 16 hrs, the plates were scraped and the cells were resuspended in LB media to use for the inoculation of 6 x 2 L baffled flasks containing 500 ml LB plus 30 µg/ml kanamycin and 30 µg/ml chloramphenicol. The cells were grown at 37 °C with aeration to an OD600 of ~0.4, at which time they were transferred to a 30 °C shaker for 30 minutes before inducing with 1 mM IPTG. The cells were allowed to grow for an additional 6 hours before harvesting by centrifugation at 6000 x g for 8 minutes. The cell paste was frozen in liquid nitrogen and stored at -80° C.

Expression of the Selenomethionine-labeled Protein. E. coli Rosetta(DE3)pLysS (Novagen) cells were transformed with the pET28a-tyv plasmid and plated onto LB media supplemented with kanamycin. Approximately 24 hrs later, several large colonies were selected to inoculate 500 mL of M9 minimal media supplemented with 30 µg/ml kanamycin and 30 µg/ml chloramphenicol for growth overnight at 37 °C. Subsequently 10 mls of the overnight culture were used to inoculate 3 x 2L baffled flasks containing 500 mL
of M9 minimal media with 5 µg/ml thiamine, 30 µg/ml kanamycin, and 30 µg/ml chloramphenicol. Cultures were grown at 37 °C to an OD₆₀₀ of ~0.2. At that point, the temperature of the incubator was adjusted to 30 °C for the remainder of the growth. Cultures were to grown to an OD₆₀₀ of ~0.75, before each flask was supplemented with 50 mgs each of L-lysine, L-threonine, and L-phenylalanine, and 25 mgs each of L-leucine, L-isoleucine, L-valine, and L-selenomethionine (13). After 20 additional minutes of growth, the cells were induced with 1 mM IPTG and allowed to grow for 6 hours. Cultures were harvested by centrifugation at 6000 x g for 8 minutes, and the cell paste was frozen in liquid nitrogen for storage at -80 °C.

Protein Purification. All protein purification steps were carried out on ice or at 4 °C. The cell paste was thawed in 100 mls of cold Ni-NTA lysis buffer containing 50 mM NaH₂PO₄, 300 mM NaCl, and 10 mM imidazole at pH 8.0. Cells were lysed on ice by four cycles of sonication (30 seconds) separated by 3 minutes of cooling. Cellular debris was removed by centrifugation at 4 °C for 25 minutes at 20,000 x g. The clarified lysate was loaded onto a 10 ml Ni-NTA agarose (Qiagen Inc.) column pre-equilibrated with Ni-NTA lysis buffer. After loading, the column was washed with about 60 mls of Ni-NTA wash buffer (50 mM NaH₂PO₄, 300 mM NaCl, 20 mM imidazole at pH 8.0), followed by gradient elution of the protein from 20 to 300 mM imidazole in Ni-NTA lysis buffer. Protein containing fractions were pooled based on SDS-PAGE, and dialyzed against 20 mM HEPPS (pH 8.0) with 200 mM NaCl. The dialyzed protein was concentrated
to approximately 23 mg/ml, based on an extinction coefficient of ~1.3 ml/(mg cm) as calculated by the program Protean (DNAstar, Inc., Madison, WI).

Molecular Weight Determination. Analytical ultra-centrifugation was performed by the University of Wisconsin – Madison Biochemistry Instrumentation Facility. Three samples of the purified native tyvelose epimerase at 0.25 mg/ml, 0.5 mg/ml and 1.0 mg/ml in 10 mM HEPPS (pH 8.0) and 200 mM NaCl were provided for analysis. The experiments were performed with a Beckman Optima XL-A centrifuge and an An 60 Ti rotor at 20 °C using 12 mm double sector charcoal filled Epson centerpieces. Rotor speeds of 3,000 rpm, 7,600 rpm, 11,000 rpm, and 13,500 rpm were utilized while monitoring the radial position of the sample by absorption of light at 280 nm. The molecular weight from a global fit of 9 data sets containing 1246 points was 154,000 indicating that the quaternary structure of tyvelose epimerase is tetrameric.

Crystallization of Native and Selenomethionine-labeled Tyvelose Epimerase. Prior to crystallization, the protein was diluted to 13 mg/ml with 20 mM HEPPS (pH 8.0), and 200 mM NaCl and CDP was added to a final concentration of 5 mM. Potential crystallization conditions were examined with a sparse matrix screen composed of 144 conditions at both room temperature and 4 °C via the hanging drop method of vapor diffusion. Single crystals were observed at room temperature at pH 5 - 6 with 10 % poly(ethylene glycol) 8000. Refinement of the crystallization conditions led to large single crystals grown at room temperature with precipitant solutions of 4 - 6% poly(ethylene glycol) 8000, 250 mM tetramethylammonium chloride, and 100 mM succinate (pH 5.5).
Crystals achieved typical dimensions of ~0.5 mm x 0.3 mm x 0.15 mm in 2 to 3 weeks and belonged to the space group P2\(_1\) with unit cell dimensions of \(a = 47.9\) Å, \(b = 167.3\) Å, \(c = 89.4\) Å and \(\beta = 105.5^\circ\). The solvent content of the crystals was approximately 50\%, with one homotetramer in the asymmetric unit.

High Resolution X-ray Data Collection. Both the native and selenomethionine-substituted protein crystals were flash-frozen in the same manner. Briefly, crystals were harvested from the hanging drop experiments and soaked for several hours to several days in a synthetic mother liquor composed of 10 – 12 \% poly(ethylene glycol) 8000, 200 mM NaCl, 300 mM tetramethylammonium chloride, 5 mM CDP, and 100 mM succinate (pH 5.5). These crystals were then transferred to 4 \% ethylene glycol, 14 \% poly(ethylene glycol) 8000, 325 mM NaCl, 300 mM tetramethylammonium chloride, 5 mM CDP and 100 mM succinate (pH 5.5) for 30 seconds, followed by a final transfer to 15 \% ethylene glycol, 20 \% poly(ethylene glycol) 8000, 400 mM NaCl, 300 mM tetramethylammonium chloride, 5 mM CDP, and 100 mM succinate (pH 5.5). Subsequently, the crystals were flash-cooled to -150°C in a stream of nitrogen gas. Frozen crystals were stored under liquid nitrogen until synchrotron beam time became available. X-ray data sets from both the native protein and the selenomethionine-substituted enzyme crystals were collected on a 3 x 3 tiled “SBC3” CCD detector at the Structural Biology Center 19-BM beamline (Advanced Photon Source, Argonne National Laboratory, Argonne, IL). The x-ray data were processed with HKL2000 and scaled with SCALEPACK (14). Relevant X-ray data collection statistics are presented in Table I.
X-ray Structural Analyses. The structure of tyvelose epimerase was solved via MAD phasing with x-ray data collected from the selenomethionine-substituted protein crystals. The software package SOLVE was utilized to determine and refine the positions of the selenium atoms (15). Visual inspection of the selenium sites with the graphics program TURBO revealed four clusters of atoms related by non-crystallographic 222 symmetry (16). Subsequent non-crystallographic symmetry averaging and solvent flattening with the software package DM resulted a readily interpretable electron density map calculated to 2.6 Å resolution (17). The averaged map was used to build an initial model of one subunit of tyvelose epimerase, after which this subunit was rotated back into the unit cell to create the full tetramer. This tetramer served as a search model for molecular replacement with the program AMORE against the native x-ray data (18). Alternate cycles of least-squares refinement with the software package TNT (19) and manual model-building reduced the R-factor to 17.9% for all measured x-ray data from 30 Å to 1.5 Å resolution. Relevant least-squares refinement statistics are summarized in Table 2. A Ramachandran plot for all nonglycinyl main chain ϕ, ψ values is displayed in Figure 1a. In each monomer there are two residues that lie outside of the allowed regions: Ser 163 and Thr 269. The electron density for these residues is unambiguous. Ser 163 is located at the beginning of the sixth α-helix in the N-terminal region while Thr 269 lies within a Type III turn delineated by Thr 269 to Asn 272. Neither one of these residues is directly involved in ligand binding. The electron density
corresponding to the bound ligands, CDP and NAD\(^+\) in Subunit I is shown in Figure 1b.
RESULTS AND DISCUSSION

Quaternary Structure of Tyvelose Epimerase. On the basis of ultracentrifugation experiments and analysis of the crystalline packing arrangement, tyvelose epimerase is a homotetramer as shown in Figure 2a. The enzyme has overall dimensions of ~60 Å x 100 Å x 110 Å and displays 222 symmetry. It can be envisioned as a dimer of dimers with the A/B and C/D pairs mimicking the quaternary structural interactions observed in UDP-galactose 4-epimerase (20). In both UDP-galactose 4-epimerase and the A/B or C/D dimers of tyvelose epimerase, there are two parallel \(\alpha \)-helices contributed by each monomer that provide the structural framework for the subunit:subunit interface. In tyvelose epimerase, these \(\alpha \)-helices are formed by Pro 93 to Gln 113 and Pro 164 to Phe 183. The buried surface area in this subunit:subunit interface is \(\sim 2470 \, \text{Å}^2 \), as calculated according to the method of Lee and Richards (21) with a probe sphere of 1.4 Å. There are two additional regions per subunit (Asn 33 to Thr 40 and Glu 53 to Arg 67) that participate in monomer:monomer interactions along the A/C and B/D pairs. The polypeptide chain lying between Glu 53 to Arg 67 contains the third \(\beta \)-strand and the third \(\alpha \)-helix of the Rossmann fold. The interfaces between the A/C and B/D pairs are not as extensive with buried surface areas of \(\sim 1330 \, \text{Å}^2 \). In the A/B and C/D subunit pairs, the adenine rings of the dinucleotides are separated by ~ 27 Å while in the A/C and B/D pairs, these rings are positioned at ~ 11 Å.
Tertiary Structure of the Individual Subunit. The crystals employed in this investigation contained a complete tetramer in the asymmetric unit. The α-carbon traces for all of the monomers are virtually identical, however, such that they superimpose with root-mean-square deviations of 0.4 Å or less. For the sake of simplicity the following discussion will only refer to Subunit I of the coordinate file. As depicted in Figure 2b, the overall molecular architecture of the tyvelose epimerase subunit can be envisioned as two lobes: the N-terminal region formed by Ala 2 to Gln 200 and Ala 242 to Gly 268 and the C-terminal motif delineated by Phe 201 to His 241 and Thr 269 to Ile 339. The N-terminal motif is dominated by a seven stranded parallel β-sheet defined by Ala 2 to Thr 7, Asp 27 to Asp 32, Glu 53 to Gly 57, Ser 76 to Leu 80, Asn 119 to Ser 123, Asn 186 to Tyr 196, and Ala 263 to Ile 266. There are two additional anti-parallel β-strands formed by Lys 136 to Glu 139 and Tyr 144 to Cys 146 and connected by a Type I turn (Thr 140 to Arg 143). These secondary structural elements of the N-terminal region are connected by a total of seven α-helices (Phe 12 to Ala 21, Thr 40 to Leu 49, Lys 62 to Tyr 72, Met 86 to Asp 91, Pro 93 to Gln 113, Pro 164 to Phe 183, and Ala 242 to Ala 254) and numerous reverse turns. The C-terminal motif is less complicated with three strands of mixed β-sheet (Val 236 to Leu 240, Ser 273 to Ser 275, and Arg 304 to Phe 306), two strands of parallel β-sheet (Phe 227 to Gly 231 and Thr 294 to Leu 296) and four major α-helices (Trp 208 to Glu 218, Leu 276 to Tyr 286, Lys 311 to Ala 316, and Ala 325 to Ile 339). The overall dimensions of the subunit are ~50 Å x 50 Å x 50 Å.
Binding sites for NAD\(^+\) and CDP. Shown in Figure 3 is a close-up view of the active site for the tyvelose epimerase subunit. There are fifteen well-ordered water molecules located within 3.2 Å of the CDP or NAD\(^+\) moieties. The cytosine ring of CDP is hydrogen bonded to the protein via the carbonyl oxygen of Tyr 204 and the peptidic NH of Ser 230. An ordered water molecule is located at 2.9 Å from the amino group of the pyrimidine ring. A strikingly aromatic patch of residues, composed of Tyr 204, Trp 208, Trp 211, and Phe 212, surrounds one side of the cytosine ring. The CDP ribose adopts the C\(_2\)-endo conformation and its 3-hydroxyl group is anchored to the protein via the side chains of Asp 302 and Gln 235. Both Arg 237 and Arg 299, through their side chain guanidinium groups, are involved in electrostatic interactions with the \(\alpha\)-phosphoryl oxygens. Additionally, N\(^+\) of Arg 237 lies within 3 Å of one of the \(\beta\)-phosphoryl oxygens. Asn 126 and Ser 194 form hydrogen bonding interactions with the other two \(\beta\)-phosphoryl oxygens. The \(\beta\)-phosphoryl group of CDP situated at approximately 5 Å from the nicotinamide ring of NAD\(^+\).

The nicotinamide ring of the dinucleotide adopts the syn-conformation as typically observed for \(B\)-side specific dehydrogenases. Both riboses of the dinucleotide adopt C\(_2\)-endo conformations. The adenine ring of NAD\(^+\) forms hydrogen bonding interactions with the carboxylate group of Asp 58 and the backbone peptidic NH group of Ile 59. Asp 32 bridges the 2- and 3-hydroxyl groups of the adenine ribose. The ribose 2-hydroxyl group also lies within hydrogen bonding distance to peptidic NH group of Arg 36. There are four water molecules located within 3.2 Å of the phosphoryl oxygens of the NAD\(^+\) ligand.
Additionally, the peptidic NH groups of Phe 12 and Leu 13 form hydrogen bonds with OP2 and OP5 of the NAD$^+$ respectively. These residues reside in the first α-helix of the Rossmann fold. The 3-hydroxyl group of the nicotinamide ribose lies with 3.2 Å of the backbone carbonyl oxygen of Leu 80, a water molecule, and Nζ of Lys 169. This interaction between Lys 169 and the dinucleotide is conserved among the members of the short chain dehydrogenase/reductase family. The 2-hydroxyl group of the nicotinamide ribose is positioned near a water molecule that, in turns, lies within 3 Å of the nicotinamide ring nitrogen. In the short chain dehydrogenase/reductase family, it has been postulated that Lys 169 activates Tyr 165 that is the ultimate base in the reaction mechanism. The distance between Lys 169 and Tyr 165 in tyvelose epimerase is 4.9 Å, a value that is comparable to that observed in other members of the superfamily. Interestingly, the distance between the nicotinamide ring nitrogen, which carries the positive charge in the oxidized form of the cofactor, and O$^\eta$ of Tyr 165 is 4.3 Å. It is possible that the chemical role of Lys 169 is in proper dinucleotide positioning and not in activation of the conserved tyrosine residue. Regarding the carboxamide moiety of the nicotinamide ring, there is an intramolecular hydrogen bond between its nitrogen and OP4 of the phosphate backbone (2.9 Å). The carbonyl oxygen of the carboxamide group hydrogen bonds with a water molecule and the backbone peptidic NH group of Met 195.

Comparison of tyvelose epimerase with UDP-galactose 4-epimerase.

Tyvelose epimerase is highly homologous to both UDP-galactose 4-epimerase from *E. coli* (27% identity and 43% similarity), and human UDP-galactose 4-
epimerase (23 % identity and 41 % similarity). In contrast to tyvelose epimerase, however, both the human and bacterial forms of UDP-galactose 4-epimerase are homodimers. Shown in Figure 4a is a superposition of the polypeptide chain backbones for the human UDP-galactose 4-epimerase and the tyvelose epimerase subunits. There are only four major differences in conformations between these two enzymes as indicated by the letters A, B, C, and D in Figure 4a. For example, there is a seven residue deletion in tyvelose epimerase, relative to UDP-galactose 4-epimerase, starting at Arg 36 and extending to His 56. This particular region is involved in the A/C and B/D interfaces in tyvelose epimerase and thus may be one factor for the differing quaternary states between these two proteins. There is a sixteen residue insertion in tyvelose epimerase, defined by Leu 132 to Tyr 153, which forms two anti-parallel β-strands that are connected by a Type I turn (Thr 140 to Arg 143). Interestingly, this region is not involved in subunit:subunit contacts nor located near the NAD$^+$ binding site. The functional significance of this insertion in tyvelose epimerase is unknown. The third region of difference occurs as a six residue deletion in tyvelose epimerase relative to UDP-galactose 4-epimerase from Gly 197 to Arg 199. This area is not located within the immediate vicinity of the NAD$^+$ or CDP ligands. Finally, there is a six residue deletion in tyvelose epimerase from Gly 231 to Val 236, which corresponds to the region defined by Gly 227 to Val 238 in UDP galactose 4-epimerase. In both of these enzymes, this area of polypeptide chain is involved in binding the nucleotide portion of the substrate, either CDP or UDP, in tyvelose epimerase or UDP-galactose 4-epimerase, respectively.
Indeed, while the positions of the NAD$^+$ ligands in both enzymes are nearly identical, the locations of the CDP versus UDP moieties are somewhat different as can be seen in Figure 4a. The α- and β-phosphorus atoms of the CDP versus UDP moieties are shifted by ~ 2 Å. This shift may be a function of the need for the substrate, CDP-paratose, to position differently in the active site of tyvelose epimerase as compared to UDP-glucose (or UDP-galactose) in the active site of UDP-galactose 4-epimerase. Recall that in the reaction mechanism of UDP-galactose 4-epimerase, the inversion of stereochemistry occurs about C-4 of the hexose rather than C-2 as in tyvelose epimerase. Also, paratose is a 3,6-dideoxy sugar. Strikingly, in the model of the human UDP-galactose 4-epimerase, the 2'-hydroxyl group of UDP-glucose is hydrogen bonded to Asn 207 while the 6'-hydroxyl group lies within 2.6 Å of O$^{\delta_1}$ of Asn 187. In tyvelose epimerase, these residues have been replaced by Gly 207 and Ser 194, respectively.

Previous detailed mechanistic investigations of tyvelose epimerase from Yersinia pseudotuberculosis IVA have suggested that its catalytic mechanism may be reminiscent to that proposed for UDP-galactose 4-epimerase (22). The reaction catalyzed by UDP-galactose epimerase is an epimerization about C-4 of UDP-glucose (or UDP-galactose) as indicated in Scheme 1. Extensive structural investigations in this laboratory have concluded that in the human UDP-galactose 4-epimerase, Tyr 157 functions to initiate the reaction by abstracting the 4'-hydroxyl hydrogen from UDP-glucose (or UDP-galactose) with the concomitant transfer of the hydride at C-4 to the nicotinamide ring of NAD$^+$. Additionally, Ser
132 in the human epimerase is thought to facilitate proton transfer from the sugar 4'-hydroxyl group to O^η of Tyr 157 possibly via a low barrier hydrogen bond (4). Tyr 157 in human UDP-galactose 4-epimerase is conserved in tyvelose epimerase as Tyr 165 while Ser 132 in the human enzyme has been replaced with Thr 125. Both Tyr 165 and Thr 125 occupy similar positions within the active site of tyvelose epimerase as observed for Tyr 157 and Ser 132 in UDP-galactose 4-epimerase active site region. Assuming that the reaction mechanisms are similar for these two epimerases as suggested by the mechanistic data, it is possible to speculate on the manner in which CDP-paratose or CDP-tyvelose might bind in the active site of the enzyme. Previous studies on the *E. coli* UDP-galactose 4-epimerase have demonstrated that the binding of the UDP moiety in the protein/NADH/UDP complex is virtually identical to that observed in the protein/NADH/UDP-glucose complex (20, 23). In light of this, a model of CDP-paratose was positioned into the tyvelose epimerase active site as indicated in Figure 4b. This model was built by following the position of the CDP moiety as experimentally determined in this investigation and rotating the sugar portion to orient its C-2 near C-4 of the nicotinamide ring. In this model, C-2 of paratose is located at ~ 3.7 Å of C-4 of NAD$^+$ and its 2'-hydroxyl group is situated within ~ 3.6 Å of O^η of Tyr 165. In the model presented in Figure 4b, the 4'-hydroxyl group of CDP-paratose lies within hydrogen bonding distance to Thr 125 and possibly to Asn 126. For the model depicted in Figure 4b, Asn 126 had to be rotated in the active site to avoid overlap with the paratose 4'-hydroxyl group. Indeed, in support of this idea of rotation, Asn 126
demonstrates multiple conformations in the high resolution structure of the protein/NAD$^+$/CDP complex determined here.

For the model of CDP-tyvelose presented in Figure 4b, a series of rotations was made about the dihedral angles starting at the β-phosphorus atom. Accordingly, this model places C-2 of the tyvelose moiety within 3.4 Å of C-4 of the nicotinamide ring and its hydroxyl group within 2.8 Å of O$^\eta$ of Tyr 165. The tyvelose 4'-hydroxyl group is now located within hydrogen bonding distance to Gln 206. In the models presented in Figure 4b for the two sugar ligands, the positions of their β-phosphorus atoms differ by ~1.0 Å. Support for this type of rotation in the active site is demonstrated by the high resolution structural analysis of the *E. coli* UDP-galactose 4-epimerase complexed with either UDP-glucose or UDP-galactose (24). In that study, significant changes were observed between the two bound substrates beginning at the β-phosphorus atoms where their positions differed relative to one another by 0.51 Å.

The putative binding mode depicted in Figure 4b can be tested by preparing and crystallizing abortive complexes of tyvelose epimerase with NADH and either CDP-paratose or CDP-tyvelose. These studies are presently underway. Regardless of the outcome of these investigations, it can be concluded that rotation of a 2'-ketopyranose intermediate in the active site of tyvelose epimerase must be different than that proposed for UDP-galactose 4-epimerase due to the difference in its regioselectivity. In UDP-galactose 4-epimerase, the putative 4'-ketopyranose intermediate displays a pseudo-C$_2$ axis, which is not present in a 2-ketose intermediate. As such, a more complicated set
of rotations about the phosphoryl backbone of the CDP-2’-ketopyranose intermediate must occur in order to present the opposite side of the oxidized sugar back to the reduced NADH for subsequent hydride transfer.
ACKNOWLEDGMENTS

We thank Professors W. W. Cleland and Frank M. Rauschel for carefully reading this manuscript and Dr. James B. Thoden for helpful advice throughout the course of this investigation.
REFERENCES

FIGURE LEGENDS

Fig. 1. **Quality of the x-ray model.** A plot of the ϕ, ψ angles for all non-glycinyl residues is shown in (a). Those regions in the Ramachandran plot that are fully or partially allowed are indicated by the solid and dashed lines, respectively. Electron density corresponding to the bound CDP and NAD+ in Subunit I is displayed in (b). The map was calculated with coefficients of the form $(F_o - F_c)$, where F_o was the native structure factor amplitude and F_c was the calculated structure factor amplitude from the model lacking the coordinates for the ligand. The map was contoured at 3 σ.

Fig. 2. **Ribbon representation of tyvelose epimerase.** The tetrameric structure of the enzyme is shown in (a). The A/B and C/D pairs of dimers are similar to the dimers observed in both the human and bacterial forms of UDP-galactose 4-epimerase. Bound ligands are depicted in ball-and-stick representations. A stereo-view of one subunit of the tetramer is shown in (b). The molecular architecture of the subunit can be envisioned as two lobes, as indicated in blue and green. The active site is wedged between these two lobes.

Fig. 3. **Close-up view of the tyvelose epimerase active site.** Those amino acid residues that are located within ~ 3.2 Å of the NAD$^+$ and CDP ligands are shown. The ligands are highlighted in yellow bonds. Ordered water molecules
are indicated by the red spheres. For the sake of clarity, Val 84 and Trp 208 were omitted from the figure.

Fig. 4 Comparison of tyvelose epimerase with UDP-galactose 4-epimerase. Shown in (a) is a superposition of the α-carbons for these two enzymes. The bound ligands for tyvelose epimerase (NAD$^+$ and CDP) and UDP-galactose 4-epimerase (NADH and UDP-glucose) are displayed in blue and green, respectively. On the basis of the observed binding for CDP to tyvelose epimerase, models of CDP-paratose and CDP-tyvelose were built into the active site as shown in (b). The CDP-paratose moiety is highlighted in yellow filled bonds while the CDP-tyvelose ligand is depicted in red filled bonds.
<table>
<thead>
<tr>
<th></th>
<th>Wavelength (Å)</th>
<th>Resolution (Å)</th>
<th>No. independent reflections</th>
<th>Completeness (%)</th>
<th>Redundancy</th>
<th>Avg I / Avg σ(I)</th>
<th>R_{sym} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>0.979371</td>
<td>50.0 – 2.30</td>
<td>59298</td>
<td>99.0</td>
<td>3.78</td>
<td>36.3</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.38 – 2.30b</td>
<td>5918</td>
<td>98.9</td>
<td>3.76</td>
<td>24.6</td>
<td>9.2</td>
</tr>
<tr>
<td>Inflection</td>
<td>0.97960</td>
<td>50.0 – 2.30</td>
<td>59576</td>
<td>99.1</td>
<td>3.81</td>
<td>35.8</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.38 – 2.30</td>
<td>5936</td>
<td>99.1</td>
<td>3.69</td>
<td>18.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Remote</td>
<td>0.96411</td>
<td>50.0 – 2.30</td>
<td>59535</td>
<td>99.4</td>
<td>3.89</td>
<td>33.7</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.38 – 2.30</td>
<td>5944</td>
<td>99.4</td>
<td>3.71</td>
<td>12.5</td>
<td>12.0</td>
</tr>
<tr>
<td>Native</td>
<td>0.97940</td>
<td>50.0 – 1.46</td>
<td>225494</td>
<td>95.2</td>
<td>3.80</td>
<td>40.8</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.51 – 1.46</td>
<td>21022</td>
<td>89.2</td>
<td>2.80</td>
<td>3.9</td>
<td>21.2</td>
</tr>
</tbody>
</table>

$R_{sym} = \frac{\sum |I - \langle I \rangle|}{\sum I} \times 100$.

bStatistics for the highest resolution bin.
Table II: Least-Squares Refinement Statistics.

<table>
<thead>
<tr>
<th>Resolution Limits (Å)</th>
<th>30.0 – 1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^a)R-factor (overall) %/ no. reflections</td>
<td>17.9 / 225493</td>
</tr>
<tr>
<td>R-factor (working) %/ no. reflections</td>
<td>17.8 / 203000</td>
</tr>
<tr>
<td>R-factor (free) %/ no. reflections</td>
<td>22.9 / 22493</td>
</tr>
<tr>
<td>(^b)No. Protein Atoms</td>
<td>10711</td>
</tr>
<tr>
<td>No. Hetero-atoms</td>
<td>1355</td>
</tr>
</tbody>
</table>

Average B values (Å\(^2\))

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein Atoms</td>
<td>25.8</td>
</tr>
<tr>
<td>NAD(^+)</td>
<td>17.4</td>
</tr>
<tr>
<td>CDP</td>
<td>31.1</td>
</tr>
<tr>
<td>solvents</td>
<td>37.4</td>
</tr>
</tbody>
</table>

Weighted RMS Deviations from Ideality

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond Lengths (Å)</td>
<td>0.012</td>
</tr>
<tr>
<td>Bond Angles (deg)</td>
<td>2.23</td>
</tr>
<tr>
<td>Trigonal Planes (Å)</td>
<td>0.005</td>
</tr>
<tr>
<td>General Planes (Å)</td>
<td>0.010</td>
</tr>
<tr>
<td>(^c)Torsional Angles (deg)</td>
<td>16.2</td>
</tr>
</tbody>
</table>

\(^a\)R-factor = (\(\sum|F_o - F_c| / \sum|F_o|\)) \times 100 where \(F_o\) is the observed structure-factor amplitude and \(F_c\) is the calculated structure-factor amplitude.

\(^b\)This value includes multiple conformations for H44, S76, V84, N126, T145, Q158, I182, N186, S247, T314, N315 in Subunit I; S19, V271, T294, S337 in Subunit II; K3, T125, Q158, T251, L276, T314 in Subunit III; and S19, K62, Q158, T314, K322 in Subunit IV.

\(^c\)The torsional angles were not restrained during the refinement.
Scheme 1

Koropatkin et al., 2003
Koropatkin et al., 2003 Figure 1
Figure 4

Koropatkin et al., 2003