Tutorial 1: Affymetrix Microarrays v1.0 - Public datasets

Jean-Yves Sgro
© 2014
Jean-Yves Sgro
Biochemistry Computational Research Facility

Note: ArrayStar is a registered trademark part of the DNASTAR Lasergene Suite
Table of Contents

Foreword ... 3

Microarrays .. 5
 Wikipedia definition ... 5

ArrayStar installation .. 7

Before you begin ... 9
 1. ArrayStar help ... 9
 2. Video Tutorials .. 9
 3. Affymetrix Arrays ... 9

10 steps for using ArrayStar ... 11
 1. ArrayStar overview .. 12

Public Dataset ... 13
 1. Gene Expression Omnibus Data ... 13
 1.1. Dataset web page .. 13
 1.2. Dataset files ... 14
 1.3. Download the data ... 15
 2. Rename files and/or attributes file ... 16
 2.1. Preparation for Windows ... 16
 2.2. Preparation on Unix/Linux/Mac ... 21

Getting started ... 25
 1. Locating & launching ArrayStar ... 25
 2. Creating a project ... 26
 2.1. Import CEL files .. 27
 2.2. Preprocessing ... 27
 2.3. Attributes and replicates .. 28
 2.4. Import Annotations .. 29
 3. Organizing generic data files ... 32
 4. Using Attributes files .. 34

Identifying genes of interest ... 37
 1. Scatter plot .. 38
 2. Gene Table .. 40
 3. Filters ... 40
 3.1. Down-regulated genes ... 40
 4. Clustering ... 42
 4.1. Hierarchical clustering .. 42
 4.2. Line clustering .. 44
4.3. K-means ... 44
5. Gene sets – up-regulated genes .. 44
 5.1. Filter up-regulated genes ... 45
 5.2. Create a new gene set .. 46
 5.3. Hierarchical clustering of up-regulated gene set ... 46
6. Gene Table: annotation & export ... 47
 6.1. Add experiment values ... 48
 6.2. Add fold-change columns .. 48
 6.3. Add statistics columns ... 49
 6.4. Add annotations ... 50
 6.5. Export gene table to text file .. 51

GO: Gene Ontology ... 53
 1. GO Enrichment Analysis ... 54
 1.1. Retrieve the 138 gene set: .. 54
 1.2. Display the GO results ... 54
 1.3. ArrayStar Help .. 55
 2. Biological process ... 56

Comparing three groups or more .. 59
 1. Identifying genes of interest ... 59
 2. Clustering: .. 60
 2.1. Heat map .. 60
 2.2. Line Graphs ... 61
 2.3. K-Means ... 62
 3. Export Gene List ... 62

Appendix .. 63
 1. Online Tutorials .. 63
This is a tutorial to start using ArrayStar, part of the Lasergene suite from DNASTAR, as licensed at the Biochemistry Department.

As a general guide, some marks are placed along most of the tutorials to indicate action to be taken by the reader: typically, **bold** commands are to be typed and often *typewritten styled text* illustrates a software output. Various check marks along the text are suggesting reading or taking action. For example, the following mark requests that the users take action and implement the specific commands or mouse clicks indicated in the text:

✔ TASK

Other markers suggest that the information should be read (✔READ) to better understand the method(s) or command(s) used, or placed there as general information (✔INFO) but not critical for the actual performance of the tutorial.
Microarrays

Wikipedia definition

A DNA microarray (also commonly known as DNA chip or bio-chip) is a collection of microscopic DNA spots attached to a solid surface.

Scientists use DNA microarrays to measure the expression levels of large numbers of genes simultaneously or to genotype multiple regions of a genome.

Each DNA spot contains picomoles (10^{-12} moles) of a specific DNA sequence, known as probes (or reporters or oligos).

These can be a short section of a gene or other DNA element that are used to hybridize a cDNA or cRNA (also called anti-sense RNA) sample (called target) under high-stringency conditions.

Probe-target hybridization is usually detected and quantified by detection of fluorophore-, silver-, or chemiluminescence-labeled targets to determine relative abundance of nucleic acid sequences in the target.
ArrayStar installation

ArrayStar is a Windows-only software, part of the Lasergene Suite from DNASTAR.

Before you start the tutorial you should install the Lasergene Suite onto a suitable computer, either running Windows 7 or up, or on a Macintosh computer with a Bootcamp partition or a virtual Windows computer under a virtualization program such as VMWare, Parallels or VirtualBox.

The installer for the Lasergene Suite can be found within the Biochemistry Intranet:

1) on www.biochem.wisc.edu click on “Biochemistry Intranet” or go directly to intranet.biochem.wisc.edu
2) Login with your Biochem ID
3) On the top bar click the Tab labelled “IT & Medialab”
4) On the left-hand side click on “Information Technology”
5) On the left-hand list click on “Available Software”
6) On the next page list locate and click on “Lasergene (Biochem username/password required)”
7) Enter your Biochem username and password
8) The next page has a barebone interface, choose the Windows installer, the only one that contains ArrayStar. The file is named: Win-DNASTARLasergene..>
9) Download the installer file onto your computer and follow the specific installation procedures contained within the file “Lasergene Installati..>” also located on that same basic web page. It is important to follow these instructions of the installation will fail.
Here are the relevant portions of the installation instruction for PC from the installation instructions:

Lasergene Installation for PC

1. Download and save the Win-DNASTARLasergene[version].zip onto your Desktop or Downloads folder. Do not OPEN the file when downloading. Just save it onto your computer.
2. Right-click on the Win-DNASTARLasergene[version].zip and click on Extract All...
3. On the pop-up window, make sure “Show extracted files when complete” is checked and click Extract
4. Run the installer and select all defaults. You will be prompted a number of times to continue or run different parts of the install.

You should now have ArrayStar available. During the installation process you can choose to install the complete Lasergene suite or select only ArrayStar. If you already have Lasergene installed for the Macintosh you do not indeed need to duplicate it.

ArrayStar can now be launched from the “Start” button. If you are not familiar with the Windows operating system you should first learn some Windows basic before attempting to use ArrayStar.

VPN connection:

If connecting from outside the Biochemistry department it will be necessary to connect via a Virtual Private Network (VPN) to mimic local presence.

Please refer to the following resources to install and activate VPN:

General University description:

https://www.doit.wisc.edu/network/vpn/

Biochemistry Department Intranet instructions:
https://intranet.biochem.wisc.edu/supportgroups/information-technology/remote-access
Before you begin

1. ArrayStar help

ArrayStar has a help menu embedded within it. However, the most recent help can be found online with all the other Lasergene software under the “Training and Support” category:

Software support:

We’re here to help! If you have any difficulties with or questions about this application, please contact a DNASTAR support representative:

- E-mail: support@dnastar.com
- Phone (Madison, WI, USA): 608-258-7420

2. Video Tutorials

For many steps short video tutorials are available on the DNASTAR web site. Each video is 1 to 4 min. long and shows what is possible to accomplish with the software. Videos are available on this link:

www.dnastar.com/t-support-videos.aspx

3. Affymetrix Arrays

ArrayStar can automatically read Affymetrix arrays but one or more files describing the array are necessary to the annotation of genes. ArrayStar can download the necessary files automatically but this will require a “login” to the Affymetrix web site.
Registration is free and your username and password can later be entered from an ArrayStar prompt.

✔ **TASK** If you intend to analyze Affymetrix data you should register on the Affymetrix web site:

1) go to www.affymetrix.com
2) At the top of the page click “Register”
3) Accept the online terms of use and click continue
4) Enter your information. Your ID will be your email

Once you are registered you can browse within the web site but also access the necessary files for any Affymetrix analysis from within ArrayStar.

Note: Currently “Exon Level” arrays are not supported by ArrayStar.
10 steps for using Array-Star

From the online training web page:

1) Begin a project by clicking one of the hyperlinks on the left of the ArrayStar Welcome Screen.

2) Normalize your data (if necessary), import annotations and attributes, and organize your experiments into replicate sets using the Project Setup Wizard.

3) View your imported data, and further organize it, if desired, in the Experiment List view.

4) Select Graphs > Scatter Plot to view a pairwise comparison in the Scatter Plot view. Select statistical tests from the Info Pane, and then click on the resulting links to select genes of interest.

5) Select Clustering > Hierarchical to view a Hierarchical clustering of your data set in the Heat Map view. Select genes of interest by clicking on a node in the Gene Tree, shown on the vertical axis of the Heat Map.

6) Select Data > Show Gene Ontology to view significant ontology/classification terms for the selected genes in the Gene Ontology view.

7) Select Clustering > k-Means to cluster the selected genes with the k-Means method, and display your results...
in the Line Graph Thumbnails view. Double-click on a graph in the Line Graph Thumbnails view to launch the Line Graph view for the cluster you selected.

8) Select Edit > Copy Image of Graph to copy the active graphical view to your clipboard so that you can paste it into another application such as Microsoft PowerPoint or Adobe Illustrator. (When pasting, use Edit > Paste, or Edit > Paste Special and then select “Enhanced Meta-file”).

9) Select Data > Show [n] Table to explore a variety of tables showing details for the genes, isoforms, exons, SNPs, peaks or fragments in your project. Add columns to tables by using the associated toolbar tools. Click on hot-links for Gene Ontology terms and other annotations to view more information online.

10) Select File > Save Project to save your work as an ArrayStar project (*.astar).

1. ArrayStar overview / Help

The Help online features a complete list of ArrayStar capabilities.

Since the URL is long and complex, a short version for the HELP entry is: bit.ly/1klgtvP
Public Dataset

At this point you should have the following necessary steps accomplished:

1) ArrayStar installed and functional.
2) Created an Affymetrix username

For this tutorial we will use data available on the public repository Gene Expression Omnibus (GEO).

The detailed explanation below can be skipped if you already have a dataset ready or if the files are provided to you in a class setting.

1. Gene Expression Omnibus Data

This web site is a repository of datasets of microarray and sequence data made public with or without an accompanying published paper.

Note that there exists a European version with cross-referencing to the GEO datasets called ArrayExpress\(^1\).

1.1. Dataset web page

The dataset uses the Affymetrix Human Genome U133 Plus 2.0 microarray to study Human airway epithelial responses to rhinovirus infection and cigarette smoke extract alone and in combination.

Each dataset has a unique accession code, for this study it is GSE27973 and the direct link to the data and relevant information is coded as a single line.

\(^1\) www.ebi.ac.uk/arrayexpress/
TASK Go to the GEO web page

or as a shortened URL version: 1.usa.gov/WiUkmP

The top of the page contains the following information about the dataset:

<table>
<thead>
<tr>
<th>Status</th>
<th>Public on Mar 15, 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Human airway epithelial responses to rhinovirus infection and cigarette smoke extract alone and in combination</td>
</tr>
<tr>
<td>Organism</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>Experiment type</td>
<td>Expression profiling by array</td>
</tr>
<tr>
<td>Summary</td>
<td>This study was performed to test the hypothesis that cigarette smoke extract would alter the responses of primary cultures of human bronchial epithelial cells to infection with purified human rhinovirus 16. The data show marked alterations in rhinovirus-induced expression profiles of a number of genes in the presence of cigarette smoke extract (CSE).</td>
</tr>
<tr>
<td>Overall design</td>
<td>Cultured epithelial cells from each of 4 donors were exposed to medium alone, rhinovirus 16 (RV16) alone, CSE alone, or RV16 in the presence of CSE. After a 24 h incubation gene expression was assessed.</td>
</tr>
<tr>
<td>Contributor(s)</td>
<td>Proud D, Leigh R</td>
</tr>
</tbody>
</table>

TASK Please take a moment to read the “Summary” and the “Overall design” entries on this page (here or on the web) before continuing.

1.2. Dataset files

Further down the page is where we can find and download the data files that we can analyse.

The “Platform” entry is simply the name and type of microarray that was used.

The samples are listed in table form on the web page. Click “More…” below
the entry “Samples (16) to see the complete list:

GSM692115	Donor 1 - medium
GSM692116	Donor 1 - RV16
GSM692117	Donor 1 - CSE
GSM692118	Donor 1 - RV16+CSE
GSM692119	Donor 2 - medium
GSM692120	Donor 2 - RV16
GSM692121	Donor 2 - CSE
GSM692122	Donor 2 - RV16+CSE
GSM692123	Donor 3 - medium
GSM692124	Donor 3 - RV16
GSM692125	Donor 3 - CSE
GSM692126	Donor 3 - RV16+CSE
GSM692127	Donor 4 - medium
GSM692128	Donor 4 - RV16
GSM692129	Donor 4 - CSE
GSM692130	Donor 4 - RV16+CSE

Note that the sample names are GSM-and-a-number and that is not very useful later in the software to organize the data by group. We will have to rely on this list to know “who is who” or “what is what” in the sample list.

For each sample the standard CEL and CHP files created by the Affymetrix software at the source will be available. We will use the CEL files since they are the closest to the “raw” intensity data.

1.3. Download the data

Locate the “Supplementary file” entry at the bottom of the page.

✔ TASK click on the “(http)” link to download all the data to your local hard drive

<table>
<thead>
<tr>
<th>Supplementary file</th>
<th>Size</th>
<th>Download</th>
<th>File type/resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSE27973_RAW.tar</td>
<td>76.5 Mb</td>
<td>(http)(custom)</td>
<td>TAR (of CEL, CHP)</td>
</tr>
</tbody>
</table>

This will download a file called GSE27973_RAW.tar on your drive. Its location will depend on the web browser and operating system you use. Typically it will be within a folder called “Downloads” and some browsers may ask you where you want to save the file.

The file GSE27973_RAW.tar is in the Unix “Tape ARchive” format and if you are downloading the file on a Linux or a Macintosh it may either unarchived automatically or it is easy to do so (e.g. double-click on the Mac.)
However, on a Windows system you will need an external software to un-archive this non-Windows format.

One free option is the software called **7zip**: www.7-zip.org which offers a 32 and a 64 bit version.

Another free option is **IZarc** from www.izarc.org

Both also support .gz (gzip) file format that is also needed later.

Note: The files might be provided in class if you are using this document within a directed tutorial.

If you are using this document on your own, complete the un-archiving of all the CEL files that first appear as *.*.CEL.gz when first extracted from the .tar file.

Note: If you are on a Mac you can either double-click on each file (tedious!) or you can open a Terminal (within Applications/Utilities) and issue the following command after moving within the directory containing the files:

```
gunzip *.gz
```

2. Rename files and/or attributes file

The files are named GSM692115 through GSM692130 and this notation is not at all useful to group samples by category of treatment within the software (ArrayStar or any other) and therefore we’ll make some efforts to either change the name of each file to contain treatment attributes (e.g. treated with rhinovirus) and/or create an attributes file list.

This is easier on a Unix/Linux/Mac environment, but since ArrayStar runs only under Windows we’ll cover all options. There are only 16 samples in this set, but the methods presented below would be even more useful for larger datasets with dozens or hundreds of files.

2.1. Preparation for Windows

This is only one method and other methods could be devised.

Goal: convert each file into a better name, for example rename based on the info provided on the GEO web page:

- **GSM692115.CEL** into **Medium_Donor-1.CEL** and continue with
- **GSM692116.CEL** into **RV16_Donor-1.CEL** etc.
The DOS command to rename a file is simply `RENAME`. We will therefore create a command file to rename all the files.

The first step is to obtain a simple plain text file containing the list of all CEL files, one per line.

This is how it can be easily done in Windows using the DOS command line (as far as this author knows, there is no GUI way to accomplish this task!)

✔️ **TASK**

1) Locate the DOS command line interface: in the START menu type “`cmd`” and the “`cmd.exe`” program will be offered. Click on it.

2) When “`cmd.exe`” is started it is looking within the default directory for the current user, *e.g.* `C:\Users\jsgro` in my case. On your computer it will reflect your current user name.

3) Navigate to the area where the CEL files are located and let’s call it DATA for example. If it is difficult to find it, you can move the directory with the mouse *e.g.* to the Desktop to more easily locate it. Assuming that is the case type the following commands:

```
  cd Desktop
  cd DATA
  DIR /b *.CEL > list.txt
```

4) This will create a file called “`list.txt`” containing the name of all CEL files.

If you double click it, the file will open under the default software to open plain text files, most likely Notepad.

This will be the start of a procedure to rename the files.

Note: The same file could also be used to create a tabulated entry of attributes as is required by other software (*e.g.* R/Bioconductor.) However, we
will need DOS program later in any case.

We now need to find a way to add the attributes listed within the Samples list on the GEO page. The easiest way is to copy/paste this data from the web page itself into a new plain text document.

✔ TASK Copy/paste the sample information within a new file, let’s call it samples.txt:

1) Open Notepad or use File> new if it is already opened
2) Copy the Samples(16) data from the GEO page
3) Paste the text within a blank file and save it as samples.txt

✔ TASK Next step: open both files in with Excel

Important: when opening sample.txt add the dash “-“ as one of the delimiters within the Wizard:
Note: the file list.txt could be made optional with the extra effort to “glue” .CEL after each GSM entry within the samples.txt file.

Now copy/paste the following columns between files:

1) Copy column C of samples.txt into column A of list.txt

2) Copy column B of samples.txt into column C of list.txt

3) add .CEL to each cell within column D

4) Add a new column before the GSM “A” column, and all columns will be shifted to the right by one letter.

5) Fill this new column “A” with the word “RENAME”

6) Optional: substitute RENAME with COPY if you prefer to duplicate the data rather than rename it.

7) Within now column D replace “Donor” (with a blank space) with “_Donor_” with an underscore before and after the word.

8) At this point your Excel sheet should look like this:
9) Now save the file as a plain text file using the Save As… menu. Name the file `rename.txt` and dismiss the warning that format will be lost (we don’t want any format at this point.)

10) Now double-click on the file just saved and it will open within Notepad.

11) The remaining spaces and Tabs have to be changed to create the final commands. The necessary steps are to Find/Replace the following:

 a. Remove the TAB before _Donor
 b. Remove Space + TAB before .CEL
 c. Replace TAB with a blank space

12) The final file should look like this:
Note: you could use **COPY** instead of **RENAME** if you wanted to keep the originals (but these could be downloaded again if need be.)

✔ **TASK** Use the created commands to rename (or copy) new file names: one easy method is to simply copy/paste the commands within the DOS cmd.exe window. However, doing so pastes “rename.txt” and therefore this simple copy/paste method may not work.

The easiest work around is simple: change the filename extension and double click it as explained below:

1) within the cmd.exe DOS window type the following command:

```
rename rename.txt rename.cmd
```

2) Look into the DATA directory and simply double-click rename.cmd (the newly renamed file:) the renaming of all GSM--- files will occur!

3) You can now delete the `rename.cmd` file or rename it back to rename.txt for safekeeping.

Note: DO NOT rename the `rename.txt` file with the mouse as the GUI is “lying” to you as to what the real file name is! You might end-up with a file named `rename.cmd.txt` even though it mat appear as `rename.cmd` in your folder. That is how modern computers try to “make life easier” but mess things up!

2.2. Preparation on Unix|Linux|Mac

The first step will be the same: copy the information from the web page, but then we’ll use clever command-line text processing to reorganize the data.
TASK Go to the GEO web page link (see above on page 13) and Copy/Paste the sample table information into a simple word processor (vi, nano or TextEdit on Mac) and save the file as samples.txt somewhere on e.g. the Desktop. (If using TextEdit make sure you save as plain text – see Format menu.)

What we need to do now is simple word processing:

1) Add .CEL to the GSM names to mimic the actual file name.
2) invert the second and last columns so that the Donor will be last
3) “glue” the donor number (third column) to the Donor word with an underscore
4) add a rename command to change the name of the file as we did in the Windows version.

To accomplish these tasks there are multiple Unix style solutions, here is one using the line editors sed and awk (on some system it is called nawk.) The commands are “piped” together with the symbol | so that results of one program are passed to the next.

The first 2 columns are separated by a TAB character, and there are differences between systems as to deal with that (\t on a Unix system and Ctrl-V+Tab on a Mac) Therefore we will use a method that does not require using the TAB. The command is written with the “line-continuation” (\) to facilitate reading but could be typed as a single command.

(The $ is the command-line prompt and is not typed:)

```
$ cat samples.txt \ 
  | sed -e 's/Donor/.CEL Donor/g' -e 's/-//g' \ 
  | awk '{print "mv "$1$2,$5"_"$3"_"$4".CEL"}'} \ 
> rename.txt
```

The above command creates “mv” (move or rename) commands that look like this:

```
mv GSM692115.CEL medium_Donor_1.CEL
mv GSM692116.CEL RV16_Donor_1.CEL
```
mv GSM692117.CEL CSE_Donor_1.CEL
mv GSM692118.CEL RV16+CSE_Donor_1.CEL
etc.

Everything is sent (redirected with >) to file rename.txt that lists the rename commands. The file can be activated with a single command line. Unlike in Windows the filename extension does not matter and we don’t need to add .cmd at the end. Simply type the following command after the $ prompt:

$ sh rename.txt

The files will be renamed with the naming scheme we devised, with attributes separated by an underscore.
Getting started

At this point you should have the following necessary steps accomplished:

1) ArrayStar installed and functional.
2) Created an Affymetrix username.
3) Have prepared the public dataset CEL files as detailed in the previous chapter or received them in class.

1. Locating & launching ArrayStar

 The exact location of the software may depend on the version of Windows you are using. However, you should be able to located it within the Windows “Start” button:

 ✔ TASK

 1) Click on the “Start” button
 2) ArrayStar may appear on the list of programs
 3) If it is not on the list click “All Programs” and located it in the updated list.

 Note: it may be possible that a shortcut exist on the desktop depending on the local installation.

When you have located the software select it or double-click it to start it.

Once launched a main screen will appear with various options as shown below.

Depending on licensing various options might be present such as the QSeq option.
2. Creating a project

A new “project” is automatically started when new data is entered into the software. The “project” is then saved as a special file that contains, in compressed form, all of the data and ancillary file information. ArrayStar project files end with the filename extension: .astar.

✔ TASK: Create a new project.

A new microarray project can be created by either clicking on the Microarray logo located under “Click to start a new project:” on the main page or by using the menu cascade File > Import Experiments > Microarray

In all cases the “Microarray Project Set-up” wizard window will appear and we can navigate to the location of the .CEL files we want to import.
2.1. Import CEL files

✔ TASK: Click on the “Add files…” button.

Then navigate to the location of your CEL files. In the previous chapter we organized files in a directory called DATA placed on the Desktop. Navigate to the directory/folder where yours are located.

Select the CEL files you want to read. In case your folder contains many other types of files a name filter is provided at the bottom right to display only CEL files. Other filters are also available.

Then click “Open” to load the files into ArrayStar.

Files are imported one by one.

The files are read-in and displayed at the bottom of the window. The “Data Scale” is set to “Linear” as this is the kind of data that CEL files contain. Data from other sources could be detected to be in log form for example and confirmation might be needed.

Click Next> to continue the import process.

2.2. Preprocessing

The next window will be about “pre-processing” with RMA by default. RMA (Robust Multiarray Analysis) was developed on Affymetrix arrays and is well suited for all typical cases.
Unless you have unusual data simply press Next> to accept and continue.

Files will be processed:

2.3. Attributes and replicates

This section is the reason we worked so hard in the previous chapter to rename the files!

✔ TASK Click “Create groups using a selection in the name” at the bottom of the window.

Then partially select CSE from the name of the first experiment, in this case CSE_Donor1, only until the underscore. This will automatically create group categories by attributes:

- CSE
- medium
- RV16
- RV16+CSE

as illustrated below:
Our hard work renaming files has paid off!
Click Next > to continue the import process.

2.4. Import Annotations

Each array contains millions of probes, each a little square on the surface of the array. Each probe corresponds to a portion of a gene, synthetized based on sequence on that specific location on the array. Each probe as a unique, but cryptic name.

But which gene is where?

This is the purpose of the annotation file that provides a correspondence between the probe name and the gene name as well as further annotations such as the complete gene sequence accession code for the RNA, the protein, from various databases. Other data is available depending on the type of array or the manufacturer.

You should be registered on the Affymetrix web site (also called NetAffx) to be able to continue with the next step. If you need to register follow the step detailed in a previous section (Affymetrix Arrays on page 9.)

The annotation file will be downloaded in a reserved folder on your Windows computer.
TASK: Click on “Download from NetAffx” on the Import Annotations window (shown with arrow below:)

Once the file is downloaded locally it can be re-used for the exact same type of microarrays in future analyses and will appear within the bottom window.

Click the **Finish** button

A data transformation warning might appear, just click Continue.

The data will now be loaded into the project.
And the ArrayStar page will update to the Experiment List view.

TASK

Save the project into a file with the menu **File> Save Project As...**

Call the file *e.g. RV16.astar* that will be saved by default in the current directory.

Note: You can save the file elsewhere as the project file is stand-alone and no longer need the CEL or annotation files.
The project files are extremely compressed and take much less disk space than the sum of the original data files and annotations.

3. Organizing generic data files

What if I don’t have files with such clever names? What do I do?

We had a whole chapter to prepare the files with somewhat “generic” GSM names from dataset GSE27973_RAW.

Files named GSM692115 through GSM692130, together with additional information about the samples, were changed into filenames that reflect the samples attributes.

However, if we had used the original file names we would have obtained the following Experiment List in ArrayStar:

All the work has to now be done “manually” to create the groups of interest.

Here is a quick summary on how to do that:

1) Click on the **Imported** folder to select it.

2) Click the **Replicates** button on the toolbar above.

3) This will open a New Replicate Set window
4) Enter the name of the first group, for example RV16. Leave the Replicate Methods as Mean and Click OK.

5) We now need to select and drag within the new replicate directory the corresponding GSM files. We can identify them visually looking at the samples information on the original web page. The RV16 files are:

 GSM692116
 GSM692120
 GSM692124
 GSM692128

6) Use Ctrl-Click to select these files and drag them into the RV16 Replicate set directory just created or move them one by one.

7) Repeat the process for the other 3 groups: CSE, medium, RV16+CSE
Clearly this is much more cumbersome but also prone to errors, and the filename change should be preferred.

Note that “Donor” and it’s associated number does not appear as an accessible attribute unless the name of the files are edited manually (right-click.)

If you are creating your own data, it is now clear how the naming of files can be chosen wisely and clearly.

4. Using Attributes files

There is another method to import attributes related to a set of data files. However, this requires to either obtain original attributes files such as Affymetrix ARR files but these are not always available.

ArrayStar will accept a plain text file with tab-delimited columns of attributes.

Using the same GSE27973_RAW data as before we can construct an attributes file easily in Unix/Linux/Mac with the following 2 commands if the samples attributes have been copied and pasted into a file called samples.txt (see Preparation on Unix|Linux|Mac on page 21.)

Note: The file needs to have a header for each column or one sample will not be assigned attributes.

$ echo -e "ExperimentID\tCase\tDonor" > samplesAttributes.txt
$ cat samples.txt | awk '{print $1"\t"$5"\t"$2"_"$3}' >> samplesAttributes.txt

The final file will look like this:

<table>
<thead>
<tr>
<th>ExperimentID</th>
<th>Case</th>
<th>Donor</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM692115</td>
<td>medium</td>
<td>Donor_1</td>
</tr>
<tr>
<td>GSM692116</td>
<td>RV16</td>
<td>Donor_1</td>
</tr>
<tr>
<td>GSM692117</td>
<td>CSE</td>
<td>Donor_1</td>
</tr>
<tr>
<td>GSM692118</td>
<td>RV16+CSE</td>
<td>Donor_1</td>
</tr>
<tr>
<td>GSM692119</td>
<td>medium</td>
<td>Donor_2</td>
</tr>
<tr>
<td>GSM692120</td>
<td>RV16</td>
<td>Donor_2</td>
</tr>
<tr>
<td>GSM692121</td>
<td>CSE</td>
<td>Donor_2</td>
</tr>
<tr>
<td>GSM692122</td>
<td>RV16+CSE</td>
<td>Donor_2</td>
</tr>
<tr>
<td>GSM692123</td>
<td>medium</td>
<td>Donor_3</td>
</tr>
<tr>
<td>GSM692124</td>
<td>RV16</td>
<td>Donor_3</td>
</tr>
<tr>
<td>GSM692125</td>
<td>CSE</td>
<td>Donor_3</td>
</tr>
<tr>
<td>GSM692126</td>
<td>RV16+CSE</td>
<td>Donor_3</td>
</tr>
<tr>
<td>GSM692127</td>
<td>medium</td>
<td>Donor_4</td>
</tr>
<tr>
<td>GSM692128</td>
<td>RV16</td>
<td>Donor_4</td>
</tr>
<tr>
<td>GSM692129</td>
<td>CSE</td>
<td>Donor_4</td>
</tr>
<tr>
<td>GSM692130</td>
<td>RV16+CSE</td>
<td>Donor_4</td>
</tr>
</tbody>
</table>

The reader is invited to try the methods shown above (Preparation for Windows on page 16) to create a similar text file in Windows e.g. with Excel or come up with an alternative editing method.

Once the attributes file (samplesAttributes.txt) is at hand, it can be incorporated within the ArrayStar information. However, this will not change the file names displayed within the Experiment List.

Here are summary step to incorporate the above attributes:

1) **Click** on the “Import Experiments Attributes…” button in the toolbar shown for Experiment List view.

2) Navigate to the location of the samplesAttributes.txt file or equivalent file (with attributes and header)

3) **Click** **Open**

4) Nothing clearly visible will happen but on the right hand side a report will be made on how many user defined attributes have been assigned:

5) Attributes can be manually created and reviewed with the toolbar button (Create / Edit User Defined Experiment Attributes)
6) **Click** this attributes button to reveal the list of attributes. Attributes are shown one column at a time, and a pull-down menu at the top (see Arrow) is used to select which attribute is displayed (the name of which is that of the header columns in the imported attributes file).

![Attributes List and Menu](image)

7) Attributes could have been created manually here, one by one, and can also be edited. **However, this is a potential risk for Human error!**
Identifying genes of interest

✔ READ Let’s first remember that a microarray contains millions of probes to account for thousands of genes and/or exons. The experiment performed on the array is “looking at” **all** of those probes and genes at the same time. This requires the help of statistical methods to sort out what can be different between sample groups.

Statistical methods include “hypothesis testing” with the underlying assumption that there are relatively few (less than 10%) changes between samples between groups.

Another important assumption is that the data behaves mostly as a “normal” (Gaussian) distribution even though even in the best cases it cannot be exactly so and in some other cases it is completely not so!

In addition, due to the fact that we are looking at so many probes or genes “at the same time” implies using the “multiple testing correction” to try at best to limit false positive and false negative results (false discovery rate or FDR.) This implies “confidence levels” such as 5% or 95% depending on perspective, in that case “allowing” up to 5% of the results to be “false.”

There are two main schools to select differentially expressed genes: p-values and fold change. Depending on the “normality” of the data and the ranking of p-values one or the other might be more appropriate for your data.

If there are enough biological replicates, ArrayStar will automatically pre-compute t-test at confidence intervals of 99%, 95% and 90% and fold change sets of genes at 2-fold, 4-fold and 8-fold change by default. Other values can then be computed with help of filters.

Groups: if there are more than 2 groups, at some point pair-wise comparisons (“contrasts” in statistical jargon) can be defined to obtain ratio between 2 measurements as a way to compare samples.

With that in mind, ArrayStar has a very easy graphical interface and provides “Views” that are pre-computed or easily computed on the spot.
1. Scatter plot

The Experiment View is the default view we have used in the previous chapter to arrange how samples are sorted in groups.

We now want to be able to compare groups and this can be done first in a graphical manner.

✔ TASK:

Click on the “Scatter Plot” tab in the main window.

By default the first 2 groups in the list (here CSE and medium) will be compared to each other. However, we want to compare the medium and RV16 groups so we will need to change this accordingly.

✔ TASK: change the groups that are plotted in the scatter plot:

At the bottom of the plot (X axis) **click on CSE** and select medium instead.

Since the Y axis is currently also selected as medium, the plot will temporarily change to a straight line.

In the same way, on the left (Y axis) **click on medium** and select RV16 instead.

The plot will now change from a straight line to a scatter plot.

At the top right, **change from Student’s t-test to moderated t-test**.

The pre-computed genes for confidence levels (quick links) will be updated accordingly.
Note that under Student’s t-test all confidence quick links are at 0.

Moderated t-test (from Help:) The primary difference between the two methods is in the calculation of variance. The Student’s t-Test calculates variance from the data that is available for each gene. The Moderated t-Test uses information from all of the selected genes to calculate variance.

The pre-computed genes for confidence levels (quick links) will be updated accordingly.

Click on the link “**144 genes at 90% confidence**” to select those genes. They will be colored white on the scatter plot and have 90% confidence of being differentially expressed between the 2 groups.

Note that some genes are below the 2-fold level represented by the 45° angle green lines on both sides of the scatter points, representing the 2-fold –up (upper line) and 2-fold down-regulated genes (bottom line.) The dahed line represent the absolute “no change” line.

It is interesting to note that most these selected genes are on the top section (up-regulated) and just and handful of genes are in the down-regulated group (bottom.)
Note: One feature of ArrayStar is that genes or probes selected in one view are automatically selected in all view and tables. This is a very useful feature to be consistent and know exactly what is currently selected regardless of where you are looking.

2. Gene Table

✔ TASK: Click on the “Gene Table” tab in the main window. All genes selected in the scatter plot are selected but not yet clearly visible.

✔ TASK: change the option to show only selected genes within the gene table as shown.

All other genes will not be listed.

Currently there are only 2 columns.

We will add more column of information later when we have selected a final set of genes.

3. Filters

Filters can be used for many filtering options, including fold change levels and statistics, but also for selecting genes that belong to a specific group into a list.

3.1. Down-regulated genes

Here we’ll select based on fold change to list all the few down-regulated genes spotted earlier.

✔ TASK: Click on the “Scatter Plot” tab in the main window to return to that view and at the top right click on Advanced Filtering…

A filter window will open.

The first filter is that of the moderated t-test. It is set at 90% significance as this is what we selected before.
Do not change this first filter.

Change the second filter line from the default value (gene Annotation Text) to **Fold Change**

Change the rest of the filter to reflect a fold change of 1.01 fold higher in the first experiment. First experiment is listed as medium.

Click Search

The final filter should look like this:

The result will be a handful of genes (6 total) that are below the median line on the scatter plot as we spotted them earlier. The list will contain many more columns that we’ll review later when we make a final list:
Identifying genes of interest

Red TASK: Click on the button on the middle task bar in the filter window to “Select and Show Results in Gene Table”

The gene table will be updated to this gene list

We could follow a similar procedure to select the other, up-regulated genes. However, it may be best to keep all genes that are differentially expressed in a single table.

4. Clustering

Since we have only 6 genes selected at the moment, we can test clustering options.

4.1. Hierarchical clustering

By default all genes from all experiments will be plotted. However, it may sometimes be better to plot only the genes that are within specific experiments, as in our case we are more interested in the 2 groups medium and RV16.

To accomplish this, rather than use the default buttons or quick links offered at various places, we’ll use the menu Clustering > Advanced Clustering…

Red TASK: use the menu Clustering > Advanced Clustering…
This will open a window within which we can select the experiments we want to plot.

Keeping all other selections as is, **uncheck** CSE and RV16+CSE and **click Cluster**

This will cluster the 6 genes by the listed methods and plot the values for the 2 selected experiments:

The name of the genes will appear within the right hand side of the window when hovering the mouse over.
4.2. Line clustering

Within the cluster results that we just accomplished above, at the bottom right under “Actions”:

✔ TASK: click on “Show a Line Graph Thumbnails view of this clustering result.”

This will present the data in groups with the log-intensity value on the Y axis and the group on the X axis. The image shown here is that obtained from printing as a white background offers more clarity than the default black background color.

4.3. K-means

A similar plot can be obtained for the K-means clustering.

Making sure that those 6 genes are still selected:

✔ TASK: use the menu cascade Clustering > Advanced Clustering… and select the K-means as the method.

This image is show as the Print preview for clarity.

5. Gene sets – up-regulated genes

Let’s review the various steps above and apply them to up-regulated genes, and at the same time save the list into a “set” that can be retrieved later.
5.1. Filter up-regulated genes

✅ TASK: Using the same method as previously let’s retrieve the up-regulated genes:

1) On the Scatter Plot view, under Moderated t-test, click on 144 genes at 90% confidence
2) Click Advanced Filtering…
3) Change the method to Fold Change
4) Verify that the first experiment is medium and the second is RV16
5) Adjust to fold 1.01 higher in the second experiment (pull-down menu)
6) Click Search

The result will display 138 genes (= 144 – 6 down-regulated we found earlier.)
5.2. Create a new gene set

✔ TASK: Click on the button on Search Results task bar in the middle of the window to “Remember Results as a Gene Set”
Change the name from “Untitled Gene Set” to e.g. “138 Up-Regulated Genes”
Click OK

Note: a new Tab will appear next to the “Experiment List” Tab named “Set List” containing one line: our newly created set. On the right hand side is presented a summary of the set: number of genes and method used to select them.

5.3. Hierachical clustering of up-regulated gene set

✔ TASK:

1) Click on the button on the middle task bar in the filter window to “Select and Show Results in Gene Table”
2) Use the menu cascade Clustering > Advanced Clustering…
3) Keep only medium and RV16 selected in the Experiments window
4) Click Cluster

138 genes should be used for the cluster.
With mouse hovering over the heat map, the probe name is underlined within a local list and information about the probe is shown on the right hand panel.
6. Gene Table: annotation & export

✔ TASK: First let’s (re)create a gene table for all 144 genes at 90% confidence:

1) On the Scatter Plot view, under Moderated t-test, click on 144 genes at 90% confidence

2) At the bottom right, under Actions, click on “Show the table of selected Genes”

3) Show only selected genes

The gene table currently has 2 columns: “Probeset ID” and “Gene Symbol”
Identifying genes of interest

Now make note of the tool bar presented in this view:

![Image of tool bar]

We will use the “123”, “ABC” and “2UP” buttons to populate the gene table with new columns of information in the steps below.

<table>
<thead>
<tr>
<th>Note: If you add columns that you don’t want: simply right-click and choose “remove column”</th>
</tr>
</thead>
</table>

6.1. **Add experiment values**

✔️ **TASK**: We will now add the intensity (log values) for the experiment of choice as new columns within the gene table:

1) **Click** on the “123” button and select **medium**: a new column is added

2) **Repeat** and select **RV16**: a new column is added

The gene table has now 4 columns with the 2 we just added.

The values are log2 values of the intensity detected.

6.2. **Add fold-change columns**

✔️ **TASK**: We will now add the fold change for the 2 experiments listed.

1) **Click** on the “2UP” button

2) Select **medium** for the Control value

3) Select **RV16** for the Experiment value

4) **Click OK**
After the ratio the word “up” or “down” is shown to indicate the regulation level.

We now have a total of 5 columns in our gene list.

6.3. Add statistics columns

Note: Statistical calculation columns are added via a menu selection rather than clicking a button.

✔ TASK: We will add a column for the moderated t-test.

Follow the menu cascade:

Statistics > Moderated t-test…

In the Statistics Parameter window verify or change the following:

- select (check) the medium and RV16 experiments at right
- choose FDR for Multiple Testing Correction in the pull-down menu
Identifying genes of interest

Click Calculate

Two new columns will be added to the table:

<table>
<thead>
<tr>
<th>Probe Set ID</th>
<th>Gene Symbol</th>
<th>medium</th>
<th>RV16</th>
<th>Fold change</th>
<th>P value</th>
<th>T value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0216384273 /</td>
<td>STAT1</td>
<td>5.54747</td>
<td>9.01415</td>
<td>11.055 up</td>
<td>0.0385</td>
<td>-7.306</td>
</tr>
<tr>
<td>A0216384273 /</td>
<td>STAT1</td>
<td>4.98356</td>
<td>7.45248</td>
<td>5.536 up</td>
<td>0.0251</td>
<td>-8.096</td>
</tr>
<tr>
<td>A0216384273 /</td>
<td>STAT1</td>
<td>7.92150</td>
<td>10.49684</td>
<td>5.960 up</td>
<td>0.0245</td>
<td>-8.205</td>
</tr>
</tbody>
</table>

P value is the FDR result and T value is the t statistic calculation.

If more columns are added they will be named P2 and T2, P3 and T3 etc.

6.4. Add annotations

The annotations available here are dependent on the array type and manufacturer and are collected as part of the annotation imported when the project is set-up. See section Import Annotations on page 29.
Annotations are added by clicking on the “ABC” button.

Some annotation headings are grouped together into sub-menus for compactness.

Highlighted here is the content of the G… submenu.

✔ **TASK: using the “ABC” button add the Gene Ontology options for “Biological Process” and for “Molecular Function.”**

We now have 9 columns in our gene table:

![Gene Table](image)

6.5. Export gene table to text file

For this purpose we will use the button “Export Selected Table Row…”

✔ **TASK:**

Click the export button and give a name to the file, *e.g.* 144-Modt-90.txt

Note: This file name is chosen to reflect the number of genes (144), the method used to select them (Modt) and the confidence level (90) while txt indicates that it is by default a tab-delimited file.

Save the file within the same directory or choose the desktop for easy find.

The file can then be opened within a spread-sheet software such as Microsoft Excel, Apple Numbers or Open Office Calc.
Hint: Within ArrayStar the fold-change (FC) columns shows “up” or “down” next to the fold change value. However, these are the result of a ratio calculation and in the exported file the “down” version represents 1/FC. For example a fold change “down” of 2 is shown as 0.5. To make sorting easier, simply create a new column labelled 1/FC to contain 1/FC from the FC column. A simple formula can be used e.g. =1/E2 – Then double click the little square at the bottom right of the cell and the formula will be spread all the way down the column till the last row.

<table>
<thead>
<tr>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fold change</td>
<td>1/FC</td>
</tr>
<tr>
<td>0.431613886</td>
<td>=1/E2</td>
</tr>
<tr>
<td>0.606505885</td>
<td></td>
</tr>
<tr>
<td>0.617536929</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fold change</td>
<td>1/FC</td>
</tr>
<tr>
<td>0.431613886</td>
<td>2.316885607</td>
</tr>
<tr>
<td>0.606505885</td>
<td>1.648788617</td>
</tr>
<tr>
<td>0.617536929</td>
<td>1.61936355</td>
</tr>
</tbody>
</table>

Adding a new column in spreadsheet to better reflect down regulated fold change

The rest is just “spreadsheet expertise.”
GO: Gene Ontology

In the previous section we created a gene table that contained information about gene ontology. Here are a few words about the nature of GO:

The GO annotation stream focuses on the capture of the knowledge about the functional activities of specific proteins, the larger biological role or process (such as photosynthesis) as part of which these specific functions collectively act, and the cellular locality where all this occurs. The terms defined for these components are represented by the “Molecular Function,” “Biological Process,” and “Cellular Component” domains of the overall Gene Ontology. Protein annotation associations with these terms capture our best knowledge about protein actions, and annotations capture different granularity of knowledge based on the experimental data available.

A few caveats (based on the GO documentation.)

<table>
<thead>
<tr>
<th>The following areas are outside the scope of GO, and terms in these domains will not appear in the ontologies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gene products: e.g. cytochrome c is not in the ontologies, but attributes of cytochrome c, such as oxidoreductase activity, are.</td>
</tr>
<tr>
<td>• Processes, functions or components that are unique to mutants or diseases: e.g. oncogenesis is not a valid GO term, as "causing cancer" is the result of reprogrammed, not normal cells and thus it is not the normal function of a gene.</td>
</tr>
</tbody>
</table>

2 geneontology.org/page/documentation
1. GO Enrichment Analysis

From the GO documentation⁴:

One of the main uses of the GO is to perform enrichment analysis on gene sets. For example, given a set of genes that are up-regulated under certain conditions, an enrichment analysis will find which GO terms are over-represented (or under-represented) using annotations for that gene set.

ArrayStar has a GO analysis function that we’ll explore these functions with the 138 genes set saved in the previous section. However, if you are following directly from the previous section you may also use the 144 genes that are currently selected. The example images below will be for the 138 genes set.

1.1. Retrieve the 138 gene set:

✔ TASK:
- Click on the “Set List” tab
- Click on the previously saved list “138 Up-Regulated Genes”
- Within the window, under Actions click “Select and show the table of this set’s Genes.”
- The view will automatically be changed to that of the “Gene Table” tab, displaying all annotation options selected previously.

1.2. Display the GO results

✔ TASK: While all genes are selected in the table use the menu cascade:

Data > Show Gene Ontology

A new “Gene Ontology” tab will be created to display the results for “biological process” data.

⁴ geneontology.org/page/go-enrichment-analysis
1.3. ArrayStar Help

Many details can be found within the Help menu of the software. Use the menu cascade:

Help > ArrayStar Help

If you are currently viewing the Gene Ontology tab, Help will open directly with that subject.

Some info glanced from the Help: Column names:

The columns in the Gene Ontology view are defined as follows:

- **Term** – The Gene Ontology or classification term.
- **P-value** – A P-value, representing the probability that the number of genes currently selected for the term occurred by chance. In general, the lower the P-value, the greater the likelihood that the term is significant.
- **P-value graph** - A graphical representation of the P-value. The number graphed is a logarithmic calculation \([-10 \times \log_{10}(P)]\) of how closely the P-value approximates “zero.” A P-value of 1.0 is graphed as “zero,” a P-value of 0.1 is graphed as “one,” etc. If all P-values are equal to 1.0, the graph will therefore appear blank.
- **Z-score** – The number of standard deviations the term is away from the expected number of genes selected. This is useful in determining if the term is over- or under-represented in the current gene selection.

Note: A positive Z-score indicates a positive correlation, while a negative number denotes a negative correlation. Since both types of correlation are equally important, any filtering or sorting uses the absolute value of the Z-score and disregards whether values are positive or negative.
2. Biological process

The list can be expanded by clicking on the [+] signs by each category to expand it further.

✔ TASK: expand categories and subcategories within the “multi-organism process” and further to reflect the image below:

Note the high Z-score under the “defense response to virus” and “detection of virus” and their associated p-values with 56 and 3 genes respectively (see in the column named “Selected.”)

Since the data is from a rhinovirus A16 infection it is clear the GO information reflects the experiment well in this section.

Expand a section further down the list named “immune system process” that also reflect virus response:

✔ TASK: on your own explore the other GO annotations
By default the data will be for the “biological process” data, but this can be changed on the right-hand side with the “Annotation” pull-down menu.
Comparing three or more groups

We have so far used only 2 of the 4 groups in the data to simplify the process. While it may be more “precise” to compare relevant groups in a pairwise fashion, it may also be desirable to compare three or more groups.

Within ArrayStar this can be accomplished with the F-test ANOVA statistical calculation.

Keeping with the 4 groups in the experimental data explored so far the following steps detail how to obtain a list of genes for all 4 groups. Most of the steps after that selection would be identical, or similar to those seen in the previous section: scatter plot, clustering etc.

1. Identifying genes of interest

TASK: Go to the “Experiment List” tab.

- Follow the menu cascades:
 - Edit > Select All
 - Filter > Filter All

In the filter window: organize a single filter with the following options within the pull-down menus

- Statistics: F-Test (ANOVA)
- Experiments: all 4 experiments should be listed: CSE, medium, RV16, RV16+CSE. [Note: any unwanted experiment could be removed with the “Remove” button.]
- Significance: 95%
Comparing three or more groups

Click Search

This will find 91 genes

Click on the button on the middle task bar in the filter window to “Select and Show Results in Gene Table”

The genes are shown within the “Gene Table” tab accompanied with annotation options previously selected for columns.

Note: data for all experiments could be inserted by clicking the “123” button.

Note: genes are automatically selected within all other views (e.g. Scatter plot, previously calculated heat maps etc.)

The next steps are quasi identical to the 2-groups versions.

2. Clustering:

2.1. Heat map

While all 91 genes are selected, follow the menu cascade:

Clustering > Advanced Clustering

And choose the following options:

- Clustering Type: Hierarchical (default)
- Graph Type: Heat Map (default)
- Distance Metric: Euclidian (default)
- Cluster Experiments: Centroid (fast) (default)

On the right hand side: Clustering Data

- Genes: Selected (default)
- Experiments: Click on all 4

Click Cluster
2.2. Line Graphs

Using the same menu cascade Clustering > Advanced Clustering simply change “Heat Map” for “Line Graph Thumbnails” and Click Cluster.
2.3. **K-Means**

Using the same menu cascade **Clustering > Advanced Clustering** change the following:

- Clustering Type: **k-Means**
- Graph Type: **Line Graph Thumbnails**
- Distance Metric: **Standard Pearson** *(default)*

Click Cluster

3. Export Gene List

✔ **TASK:**

Click the export button and give a name to the file, *e.g.* 91-Anova-95.txt

Note: any additional annotation column should be added before export.
Appendix

1. Online Tutorials

www.dnastar.com/t-support-videos.aspx

In Fall 2014 the following videos for “Gene Expression Analysis” are available:

- DNASTAR - Clustering Your Data
- DNASTAR - Gene Ontology Workflow
- DNASTAR - Analyzing Gene Expression Patterns
- DNASTAR - Identifying Co-Regulated Genes
- DNASTAR - Clustering Gene Expression Data
- DNASTAR - Creating Gene Sets in ArrayStar
- DNASTAR - Using the Gene Table in ArrayStar
- DNASTAR - Using the Gene Ontology View
- DNASTAR - Using the Scatter Plot
- DNASTAR - Using Venn Diagrams in ArrayStar
- DNASTAR - Importing Microarray Data and Creating Replicate Sets
- DNASTAR - Importing Annotations in ArrayStar
- DNASTAR - Importing Custom Annotation and Ontology Data
- DNASTAR - Combining RNA-Seq and Microarray Data